Annotated Bibliography II of the Hard Clam *Mercenaria mercenaria*

J. L. McHugh
Marjorie W. Sumner
The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry.

The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report—Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS; intensive scientific reports on studies of restricted scope; papers on applied fishery problems; technical reports of general interest intended to aid conservation and management; reports that review in considerable detail and at a high technical level certain broad areas of research; and technical papers originating in economics studies and from management investigations. Since this is a formal series, all submitted papers receive peer review and those accepted receive professional editing before publication.

Copies of NOAA Technical Reports NMFS are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Although the contents have not been copyrighted and may be reprinted entirely, reference to source is appreciated.

50. Preparation of acetate peels of valves from the ocean quahog, Arctica islandica, for age determinations, by John W. Ropes. March 1987, 5 p.
64. Illustrated key to penaeid shrimps of commerce in the Americas, by Isabel Pérez Farfante. April 1988, 32 p.
Annotated Bibliography II
of the Hard Clam
Mercenaria mercenaria

J. L. McHugh
Marjorie W. Sumner

September 1988

U.S. DEPARTMENT OF COMMERCE
C. William Verity, Jr., Secretary
National Oceanic and Atmospheric Administration
William E. Evans, Under Secretary for Oceans and Atmosphere
National Marine Fisheries Service
James W. Brennan, Assistant Administrator for Fisheries
The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.
CONTENTS

Introduction 1

Acknowledgments 1

Bibliography
 Part 1 2
 Part 2 37
 Part 3 42

Subject Index 46

Errata 59
Annotated Bibliography II of the Hard Clam
Mercenaria mercenaria

J. L. McHUGH
MARJORIE W. SUMNER
Marine Sciences Research Center
State University of New York
Stony Brook, NY 11794-5000

Introduction

In this era of prolificating scientific information it is difficult to keep up with the literature, even in one's own field. Review articles are helpful in summarizing the status of knowledge. In oyster biology, several such published reviews have been of great help to working scientists. The outstanding contributions that come to mind are those by Baughman (1948), Korringa (1952), Joyce (1972), Breisch and Kennedy (1980), and Kennedy and Breisch (1981). If done well, such compilations serve as checkpoints, eliminating or vastly reducing the need to consult the literature in detail.

On Long Island, New York, where the hard clam Mercenaria mercenaria is the major commercial resource, we have felt the need for some time for a compendium of knowledge on this important mollusk. Several years ago my secretary, students, and I began to gather materials for an annotated bibliography. We have already published a collection of 2233 titles (McHugh et al. 1982), nearly all accompanied by abstracts, and in this publication we have added another 460.

The experience has been rewarding. We have been surprised at the extent of the literature, much of it only remotely related to the shellfish industry itself, but nevertheless throwing light on the biology, physiology, and many other aspects of the scientific knowledge of hard clams.

The following bibliography is divided into three parts. Part 1 comprises the bulk of the bibliography, while Parts 2 and 3 contain additional titles that we decided to include during editing, submission, and approval of the manuscript for publication. All three parts are indexed together, however.

We also reexamined those titles in the previous bibliography (McHugh et al. 1982) which did not include abstracts. These are included in Parts 2 and 3 of this bibliography. Most of these contained no specific reference to Mercenaria mercenaria. A few searches were terminated for various reasons.

Acknowledgments

This work was sponsored by the New York Sea Grant Institute under a grant from the Office of Sea Grant, National Oceanographic and Atmospheric Administration, U.S. Department of Commerce. The junior author carried most of the load of searching the literature, and her familiarity with the main library of the State University of New York at Stony Brook and its various branches and their staffs was of inestimable value. Thanks also to the staffs of these libraries for helping to locate elusive papers, including many through interlibrary loan. Preparation of the final copy was done by Carol Case, assisted by John Ellsworth.

Citations

Baughman, J.L.
1948. An annotated bibliography of oysters, with pertinent material on mussels and other shellfish and an appendix on pollution. Texas A&M Research Found., College Station, TX 77843, 749 p.

Breisch, L.L., and V.S. Kennedy.

Joyce, E.A., Jr.

Kennedy, V.S. and L.L. Breisch.

Korringa, P.

McHugh, J.L., Marjorie W. Sumner, P.J. Flagg, D.W. Lipton, and W.J. Behrens.
BIBLIOGRAPHY: Part 1

Freezing tolerance in intertidal invertebrates is restricted to species in the supralittoral zone of temperate and Arctic regions. Cold resistance of animals appears to be based on tolerance to tissue ice formation. Invertebrates found naturally in seawater of high salinity are more cold-tolerant than those in brackish waters. Improved freezing resistance can be obtained by acclimating animals to low temperature in conjunction with high salinity. Differences in lethal temperatures among bivalves appear to be caused by differences in the freezable fraction of tissue water. The intertidal mussel Mytilus edulis possesses less freezeable water than the subtidal quahog Venus mercenaria. (Modified author's abstract - J.L.M.)

Reviews papers by Klingensmith and Klingensmith, and Stillway abstracted elsewhere in this volume. (J.L.M.)

Clams of known genotype, from a wild population of known composition, were individually induced to spawn. All gametes were mixed at one time to produce a randomly bred cohort of clams. After one year the sample of 1081 was measured and their enzyme phenotypes determined by a starch gel electrophoresis for Pgd, Lap, Pgi, Pgm-2 and Pgm-3. The genotype frequencies differed significantly from Hardy-Weinberg expectation for all genes except Pgd, but only for Lap was the deviation associated with heterozygosity, for which there was a striking deficiency. The explanation must be differential survival. (J.L.M.)

Hard clams (Mercenaria mercenaria) were spawned individually and mated to produce two sibships. Progeny showed complete conformity with Mendelian expectation in segregation and assortment of ratios for five allototype loci: Lap, Pgi, Pgm-2, Pgm-3 and 6-Pgd. (J.L.M.)

Clams (Mercenaria mercenaria) of known genotype, from a wild population of known composition, were individually induced to spawn. All gametes were mixed at one time to produce a randomly bred cohort of clams. After one year, 1081 of these clams were measured and their enzyme phenotypes determined by starch gel electrophoresis for the enzymes Pgd, Lap, Pgi, Pgm-2, and Pgm-3. Genotype frequencies differed from Hardy-Weinberg expectation for all genes except Pgd and Pgm-2, but only for Lap was the deviation associated with heterozygosity, for which there was a striking deficiency. Since the cohort was randomly bred, the Wahlund effect cannot explain this observation but differential survival can. Two genes, Lap and Pgm-3, showed highly significant associations of genotype with shell size. (Modified authors' abstract - J.L.M.)

Florida has only recently become a significant producer of hard clams (Mercenaria mercenaria). In 1984 the dockside value of hard clam landings represented 43% of total dockside value of all species of clam landed in the U.S. Landings in Florida were 1.8 million pounds of meat with a dockside value of $6.6 million in 1984. Most production in Florida comes from the Indian River Lagoon system. The growth of the hard clam fishery is obviously of importance to the local economy. Tables give total U.S. clam landings, reported Florida landings and value 1970-84, landings of the most important species of fish and shellfish in Florida, hard clam landings and value by county in Florida, and hard clam landings and value for Brevard County 1975-84. (J.L.M.)

Cites work of several authors abstracted elsewhere in this bibliography. Bivalves can distinguish between favorable and unfavorable environmental conditions and make appropriate behavioral responses. Many utilize valve closure as a protective mechanism. Sensory receptors on the marginal lobes of mantle and siphons can detect changes in the medium even when valves are apparently closed. Valve closure allows the organism to overcome short-term changes in environmental conditions. It has no survival value when changes are long-term. (J.L.M.)

Juvenile clams, Mercenaria mercenaria were fed one of three diets consisting of the flagellate Isochrysis galbana, the torular yeast Candida utilis, or a 50% dry weight mixture of each. Increases in most growth parameters were higher for clams fed algae or the mixture than yeast alone. Clams fed yeast grew at approximately half the maximum rate, while oysters fed yeast showed zero or negative growth. Nutritive quality appears to be important, although amino acid composition among the three diets was similar. Growth of clams was directly related to the amount of protein, lipid, and ash. Growth of oysters was related only to the amount of lipid. Respiration rates appeared normal for all groups, yet respiration frequency accounted for a large percentage of assimilated calories. Growth efficiency for clams fed yeast was very low. The quantity and quality of the ingested yeast ration probably are suboptimal, and differences in diet quantity and quality are reflected by differential partitioning of energy within the energy budget of the animal. It is likely that yeast lacks a vital micronutrient or fatty acid is required. (Modified author's abstract - J.L.M.)

Of bacterial exudates (Lactobacillus sp.) 61.7% were consumed by Venus verrucosa, but only 19.9% of algal (Passolava lutheri) exudates. The clam seems to assimilate bacterial products more easily. (J.L.M.)

Utilization of a viable bacterial suspension (Lactobacillus sp.) by the clam Venus verrucosa was investigated as a function of time. Data on the functioning of the different tissues suggest an important recycling of the metabolic products of the bivalves by bacteria of the suspension, demonstrating the role of bacteria as food for bivalves. Mercenaria mercenaria is not mentioned. (J.L.M.)

The technique of weighing in water has been tried with hard clams, Mercenaria mercenaria, without much success. Calcification is apparently much slower than in oysters. Hard clams held in trays without substratum become infested with Polysora websteri and are incapable of covering the resulting mud blisters satisfactorily. (J.L.M.)

Dr. Louis Leibovitz is a shellfish doctor, formerly involved with bird diseases. He says shellfish have several unparallelled assets as a food supply: 1) a very high reproductive rate, and 2) free food. He finds great similarities between raising birds and raising shellfish. The principal difference is that shellfish live in water. The article discusses some of the problems of growing shellfish, including hard clams Mercenaria mercenaria. (J.L.M. and M.W.S.)
Each clam (Mercenaria mercenaria) was marked with paint and returned to one of
30 one-meter plots. Half were covered in Cuban shell grass, the others stripped
of their grass and clams left in bare, sandy bottoms. Hard clams with cover of sea grass
fared well but clams left in sandy bottom had lost 32% to whelks after 6 months.
Repeating the experiment in warm weather for 4 months he found that 70% of clams
in sandy areas had been destroyed by whelks. Conclusion: grass beds denued by
raking and clam kicking increase predation by whelks. (J.L.M.)

Getting a clam out of bed. Univ. NC Sea Grant Coll. Prog., Raleigh, NC 27695.
Traditionally, most clammers have used rakes or tongs to unearth hard clams from
the bottom. Most hand clamping is done in the warmer months. One method is called
“swimming for clams” which is done on hands and knees in shallow water. Others
clam “by the sign” which involves looking for the small hole made in the sand when
they are feeding. Kicking, by which clams are brought out of the bottom by the
propeller wash, and dredging, are winter fisheries, limited by the NC Division of
Marine Fisheries. In 1981, 1,458,000 pounds of clams were harvested in the State,
30% by kicking, 64% by hand methods, and 4% by dredging. Pollution and
overharvesting are the greatest threats. Researchers are looking at harvesting methods
and contamination, hoping to manage wisely. (J.L.M.)

To hatch a million eggs. Univ. NC Sea Grant Coll. Prog., Raleigh, NC 27695.
Coastwatch, March 1982:5-6.
Describes the operation of a hatchery in North Carolina Clams are held until January
or February before planting, and are protected from predation by nets. They showed
good growth and little predation. Others hold them until May. Clam hatcheries face
a lot of unknowns, but may produce more clams. (J.L.M.)

Quahog. Sea Grant Coll. Prog., Texas A&M Univ., College Station, TX 77843, The
There has never been a commercial hard clam fishery for Mercenaria campechiensis
in Texas, yet clams are abundant and Indian shell mounds are loaded with clam shells.
Researchers are investigating the possibility of establishing a clam fishery. (J.L.M.)

Aging clams still active in bed. Univ. NC Sea Grant Coll. Prog., Raleigh, NC 27695.
Coastwatch Nov/Dec 1985:5.
Despite rumors, big, old clams (Mercenaria mercenaria) are not sexually inactive.
In fact, they produce many more eggs per clam than smaller clams. (J.L.M.)

The major nutritional constituents of hand clams (Mercenaria mercenaria) are listed.
Some shellfish related illnesses are described, and the NY State Dept. of Health has
issued an advisory against consumption of all raw shellfish. (J.L.M.)

In 1977 a clammer from New Jersey began shipping Florida clams to the Fulton Market
in New York. He also opened Florida’s first deputation plant to increase the supply
of clams. In 1982 an unusually heavy set of clams (Mercenaria mercenaria) occurred
in the Indian River, FL. Local clammers soon were outnumbered by migrants from
the northeast, with high powered boats and sophisticated rakes and tongs. Clams
became the second most important fishery in Florida (next to shrimp), valued at some
$15 million per year. Cries of “Yankee go home” and rumors of vandalism alarmed
officials. The fabulous set of 1982 was quickly decimated over the next few years
and only remnants remain. The price of clams has escalated steeply. It is believed
that a dependable, long-term supply depends on culture. The most serious
constraint is the supply of seed, and an experimental hatchery started in 1983 is presently
the only hatchery in Florida. The current goal is production of at least 10 million
seed in 1986 and more later. (J.L.M.)

20 Ansell, A. D. 1960.
Observations on predation of Venus ativula (da Costa) by Natica calder (Forbes).
Approximately 15% of the population of Venus ativula was bored by Natica calder
in the first year of life, 5% in the second, and 1-2% in the third. The holes were
near the ventral margins of the shell. The observed distribution of holes over the shell
appears to be the result of a stereotyped behavior pattern involving recognition of
the prey and adoption of a particular attitude while boring. The possibility that the
appearance of Natica calder in Kames Bay was connected with the great increase in
density of Venus ativula from a high spartfall in 1955 is discussed. (J.L.M.)

The effects of prey size, predator size, and sediment composition on the rate of predation
of the blue crab (Callinectes sapidus Rathbun) on the hard clam (Mercenaria mercenaria Linne).
Hard clams were more vulnerable to predation by crabs in the laboratory in soft
sediments (sand, sand/mud) than in crushed oyster shell or granite gravel aggregates.
When crabs were given a choice of clam sizes, small crabs (<75 mm carapace width
- CW) consumed 5 and 10 mm size-class clams. Medium crabs (75-125 mm CW)
preferentially consumed 10 mm size-class clams. Large crabs (>125 mm CW)
consumed 10 and 25 mm size-class clams equally. All blue crab size-classes showed a
preference for soft substrates rather than aggregates. The following sediment types
are ranked in increasing order of their potential to protect clams from blue crab predation:
barren substrate <sand/sand/mud/crushed oyster shell = fine gravel. Shell and fine
gravel provide a refuge from blue crab predation for all sizes of clams. (Modified
author’s abstract - J.L.M.)

The effects of prey size, predator size, and sediment composition on the rate of predation
of the blue crab, Callinectes sapidus Rathbun, on the hard clam, Mercenaria mercenaria
In the laboratory blue crabs of all size classes exhibited a preference for sand, mud,
and sand/mud rather than crushed oyster shell or granite gravel. Clams were more
vulnerable to predation by crabs in sand and sand/mud than in crushed oyster shell
or granite gravel. Small crabs (<75 mm carapace width - CW) consumed clams of 5
and 10 mm shell length. Medium crabs (75-125 mm CW) preferentially consumed
10 mm clams. Large crabs (>125 mm CW) consumed 10 and 25 mm clams equally.
Blue crabs did not eat clams >40 mm. (J.L.M.)

23 Austin, H.M. 1981.
Drought has varied effects on Virginia-North Carolina fisheries. Cent. Ocean Manage.
Salinity intrusions upriver have produced favorable conditions for hard clam
(Mercenaria mercenaria) larval survival. The hard clam needs a salinity of at least
18°O/oo for successful reproduction and larval survival. Migration of the 18°/oo
isohaline north into Pocomoke and Tangier Sounds and the York River may result in
the first good clam strike there in many years. (J.L.M.)

Mitochondria from the ventricle of the marine clam, Mercenaria mercenaria : substrate
preferences and effects of pH and salt concentration on proline oxidation. Comp.
Mitochondria with high respiratory control ratios (RCR) have been isolated from
the ventricle of the marine clam Mercenaria mercenaria. Proline is the preferred substrate
of the mitochondria of the ventricle based on state 3 rates. Pyruvate, ornithine, and
succinate are oxidized at rates 3/4 that of proline. a-Glycerophosphate was oxidized
at rates one-half that of proline. The pH optimum for proline oxidation lies
between 6.5 and 7.5 based on RCR and ADP/O, and between 7.0 and 7.4 based on state-3
rates. KCl concentrations between 250 and 450 mM gave optimum values for the oxida-
tion of proline based on RCR and state-3 rates. KCl concentration had little effect
on ADP/O between 100 and 850 mM. (Modified authors’ abstract - J.L.M.)

Soluble effects on mitochondrial respiration: the kinetics of proline oxidation by mitochondria from the ventricle of the marine clam Mercenaria mercenaria. Comp.
Biochem. Physiol. 81B(3):777-780.
Compared with the isosmotic state, the rate of oxidation at any concentration of pro-
line by intact mitochondria is greater in the hyposmotic state and lower in the
hypersosmotic state. It is suggested that volume changes in mitochondria during the
early stages of osmotic stress may be responsible for adjustments in intracellular con-
centration of certain amino acids observed during volume regulation in marine bivalves. (Modified authors' abstract - J.L.M.)

26 Barile, Diane. 1986.

The Lagoon produced 80% of Florida's clam harvest. Clammers from New York, Rhode Island, and North Carolina have introduced basket rakes, and sophisticated deputing plants and relay techniques purify clams from polluted waters. Today the Indian River is home to a population of about 600,000 people and it is still growing. (J.L.M.)

The purpose was to determine if these small algae and indirectly nitrogenous wastes from Long Island duck farms are responsible for poor growth of Mercenaria mercenaria in New York. Preliminary experiments showed that hard clams were capable of clearing "small form" cells from suspension. In a 6-week growth experiment, clams fed Nanocthrilus atomus, a common "small form" species, showed no growth, while clams fed on algal species Pseudodictyota paradoxa, known to support growth in bivalves, grew well. In subsequent experiments, absorption efficiencies of "small forms" by clams ranged from 17.6% to 31.1% compared with 80.3% and 86.5% for algae normally used in clam culture. (Modified author's abstract - J.L.M.)

Nurseries are designed for the convenience of the operator, not the stock. The obvious variables such as salinity, turbidity, food type, and concentration have been attended to, but losses continue to occur. Frequent mortality occurs apparently due to decay products and associated organisms. To overcome this problem the stock has to be evacuated before mortality sets in. Theoretically decay processes could be kept apart from the healthy animals but this is impossible to do in practice. There is also the possibility of an epizootic. Presently no cures from molluscan diseases have been developed, and in the event of an outbreak, one must assume that it would spread rapidly through the entire stock causing heavy losses. The necessity of pond and stock hygiene should be emphasized. When washing the bivalve stock the washings should not run back into the culture pond, which is a routine practice in many nurseries. (J.L.M.)

The responses of three species of bivalve mussels to declining oxygen tension at reduced salinity. Comp. Biochem. Physiol. 48A:793-806.

Gelosia cydonica and Anadara granosa experience hypoxic conditions and can regulate their oxygen consumption at reduced oxygen tension in water of full salinity. These two species and Mytilus edulis can also regulate oxygen consumption at reduced oxygen tension in diluted seawater. Their capacity to regulate is reduced under these conditions, although only in Anadara is this reduction very marked. At reduced-salinity oxygen consumption Mytilus is inhibited at first, but recovers within 48 hours. The ability to regulate oxygen uptake at reduced oxygen tension is not lost during the acclimation period. At 23.5% salinity perfusion index increases with reduced PO2, but at 16.3% perfusion index does not change and PO2 is reduced to 60 mm Hg. Mercenaria mercenaria is not mentioned. (J.L.M.)

Reference is occasionally made to Mercenaria mercenaria studied by other authors abstracted elsewhere in this bibliography. (J.L.M.)

31 Beal, B.F. 1983.

Snapping shrimp Alpheus heterochaelis and A. normanni in laboratory tanks used their major chela to crush and consume juvenile hard clams Mercenaria mercenaria. Shrimp of 19.1-39.4 mm total body length ate clams in the largest size-class 15.1-20.0 mm shell length. But they preferred smaller clams when offered equal numbers in this large size-class and in each of three smaller size-classes. Female shrimp had a higher predation rate than males. Major chela of female A. heterochaelis 33.2 mm total length were smaller than those of males of equal size. A. heterochaelis 19.1-27.2 mm total length had larger major chela for a given body length than did specimens of A. normanni but predation rates were not significantly different. The number of clams crushed was related to size of major chela and total body length for A. normanni but not for A. heterochaelis. Alpheus spp. inflict two types of shell damage which are identical with those of other crabs. The results imply that previous studies may have overestimated the importance of crab predation and underestimated the importance of predation by snapping shrimp. (Modified author's abstract - J.L.M.)

32 Beal, Brian Fairfield. 1983.

Predation on Mercenaria mercenaria by rapping predators occurred only at unvegetated sand flats and accounted for 87% of all clams recovered at one site. This high mortality rate was unique among all sites and rapping rate was significantly lower at other unvegetated sand sites. Mercenaria mercenaria at unvegetated sand sites do not reach an escape in size from rapping predators. Hard clams in muddy areas appear to reach a size refuge from predation by crushing or chipping predators and a spatial refuge from rapping predators, which are both associated. Field tests provide little support for the hypothesis that sea grasses provide hard clams with the structural habitat heterogeneity as a refuge from predation. Natural shell bottom, on the other hand, served to reduce efficiency of large epibenthic digging or burrowing predators. This is supported by three observations: 1) natural hard clam densities were higher at a shell site than at any other unvegetated site, and higher than natural densities at two nearby sea-grass meadows; 2) survivorship of experimental clams was independent of initial clam size; and 3) recruitment was highest at a shell site. Growth of small clams (<29.9 mm long) was probably exponential, but growth rates differed little between sites perhaps because few small clams survived the full year. Small clams (29.9 mm long) in the high-density treatment were found to have higher survival rates than their low-density counterparts. It was hypothesized that the dense assemblage of neighboring large clams in the 8x density treatment provided a structural barrier which protects smaller clams from predation. Growth rates were affected positively by increasing intraspecific density at two of the nine sites, suggesting, over the range of densities tested, that no food limitation on growth existed. However, at four sites growth rate of shell length relative to shell width was faster in the high-density treatment, implying that competition for space may have occurred. There was no relationship between recruitment rate and adult density at any site, which suggests that adult-larval interactions were relatively unimportant within the range of densities tested in regulating hard clam populations. Hard clams from Back Sound were transplanted to sites in the North River, Bogue Sound, and Core Sound. At these transplant sites the fate and growth rate of naturally occurring clams were compared to Back Sound-derived clams. Results suggest that environmental factors operate to a degree above any possible genetic differences. These experiments can be used by shellfish managers to incorporate basic but essential biological parameters into existing regulatory measures and also into fishery yield models. These will help determine whether the abundance of hard clams is self-sustaining given the current rate of commercial exploitation. A management scheme based in spreading of shell or stone aggregate in unprotected areas is considered. (J.L.M.)

33 Becker, Margaret. 1983.

In 1982 the NY State Dept. of Health (DOH) investigated over 275 incidents of enteric illness associated with eating of raw or partially cooked hard clams and oysters. As a result DOH issued health advisories warning against consumption of raw clams or oysters. This disease outbreak was one of the largest of recent times. Altogether more than 400 people became ill from eating shellfish, mostly hard clams (Mercenaria mercenaria), showing symptoms associated with gastroenteritis, an illness causing nausea, vomiting, diarrhea, chills, weakness, low fever, and headache. Ten also contracted infectious hepatitis, a communicable disease of the liver. Later over 250 incidents of enteric illness, including between 5 and 10 cases of infectious hepatitis, associated with raw clam or oyster consumption were investigated, followed by another DOH health advisory. Principal sources of shellfish implicated in the first outbreak were out-of-state. The later outbreaks were caused by a combination of out-of-state and local Long Island clams. These outbreaks clearly demonstrate the need for improved resource management by industry and government cooperatively. These will
Simultaneous analyses of changes in dry body weight, heavy metal concentrations, and total body burden of heavy metals in M. mercenaria show that temporal variations in metal levels are associated with biological processes of the organism. Changes in Ni, Pb, and Cu levels are related to the spawning cycle, but Cd, Cr, and Zn levels are not. Interpretation of fluctuations in metal concentrations may be misleading unless considered with respect to seasonal variations in body weight. (Modified authors' abstract - J.L.M.)

An area in Great South Bay, NY, which has been closed to shellfishing from domestic pollution, was also shown to have elevated levels of heavy metals in hard clams and in sediments. Clams from this area were transplanted to the central portion of the Bay which is open to shellfishing. Behavior of heavy metals in transplanted clams was primarily affected by long-term trends based on seasonal fluctuations. The clams were depurated of bacteria, but no depurination of any heavy metal analyzed (Cd, Cr, Cu, Ni, Pb, and Zn) was noted during the 60-day period of the study. In fact, significant increases in total body content of Cd, Ni, and Pb occurred. Cd and Pb levels were not elevated above natural levels found in the transplantation area, but Ni was approximately 56% higher. (Modified authors' abstract - J.L.M.)

The large edible clam Codakia orbicularis lives in sulfide-rich environments in subtropical regions. Gill tissues contain intracellular procarotytic cells and yield enzyme activities associated with sulfate oxidation, carbon fixation, and nitrogen reduction. This suggests chemosynthetic capability similar to those of deep-sea hydrothermal vent animals. Reproduction, growth rates, and chemical composition of C. orbicularis are similar to other commercially exploited clams like Mercenaria mercenaria. The potential for mariculture using industrial sulfur waste products is evident, but needs to be demonstrated. (Modified authors' abstract - J.L.M.)

A conservative estimate of the landings and values in 1984 is about 166 million clams of various sizes worth over $77 million. This compares with weights of about 125,000 pounds of meats and $4.2 million in the preceding two years. Harvesting, transportation, and relocation are closely monitored and supervised by law enforcement officers and the Fla. Department of Natural Resources. Depuration is accomplished in tanks using recirculated UV-treated water. (J.L.M.)

Shell strength of Mercenaria mercenaria was within or below the range of maximum force generated by blue crabs of the sizes tested. All Mercenaria could be crushed by blue crabs, yet they persist in nature. Survival must be associated with reproductive behavior and/or their restricted availability to blue crabs and other predators in refuges of time or space. (J.L.M.)

No mention of Mercenaria mercenaria. Ecological studies of predator-prey interactions have frequently concluded that surviving prey live in refuges from their predators. The effectiveness of various refuges in protecting Mya arenaria from predation by Callinectes sapidus was tested. (J.L.M.)

The population of Venus gallina consists of several cohorts of varying importance. There are generally two recruitments per year, and the life span in the Gulf of Marseille is about 2 years. Growth in weight occurs in spring when nutritional conditions are good. Spawning occurs in summer. Mercenaria mercenaria is not mentioned. (J.L.M. and M.W.S.)

Describes a new method to mark large numbers of molluscs permanently. They are placed in a tank containing media, food, and tetracycline at a concentration of 0.5/200 mg. Bivalves so treated daily for 1 to 14 days, or longer as desired, will be permanently marked. The mark is normally weakly visible, but fluoresces a vivid yellow-orange when exposed to ultraviolet light. (Modified authors' abstract - J.L.M.)

There was a preference for Malumia lateralis over hard-shell clams Mercenaria mercenaria of equal size. Shell length and shell thickness appear to influence the preference of horseshoe crabs for bivalve prey. (Modified author's abstract - J.L.M.)

Mercenaria mercenaria is not mentioned, but the vulnerability of burrowing bivalves to shell-breaking predation by crabs is influenced strongly by shell features: size, shell thickness, degree of inflation, and the presence or absence of a gape. Thick-shelled clams resisted a greater number of force pulses than did thin-shelled clams of the same body weight. This suggests that the reason for increased resitance to crabs is prolongation of the shell-breaking time. A large-thick-shelled, tightly-closing clam may eventually be opened, but it probably would be rejected in favor of prey with shorter handling times. (J.L.M.)

Field experiments involving recovery of marked clams (Protothaca staminea) showed that even adult native littleneck clams could suffer high mortality to cancrid crabs. Mortality rates increased with clam density, suggesting that these crabs preferentially forage in areas of higher prey density. Acoustic telemetry showed that at least one of the crabs, Cancer productus, is sufficiently mobile to search large areas while foraging. (J.L.M.)

The study showed that clams can sort sediments from algae and selectively reject organic-coated and organic-free sediment particles in pseudofaeces. Clams also appear to selectively reject larger/heavier mineral particles from a sediment suspension containing particles <44 μm in diameter. Phaeophorbia is the predominant phaeopigment in clam faeces, making up 92-99% of total phaeopigments. Algal ingestion rate declines with increasing sediment load, caused by a reduction in clearance rate. Within the concentration range tested, clams lose a limited amount of the algae cleared (up to 18%) as pseudofaeces. Silt additions to a diet of Pseudonitrocytis paradoxa or Nannochloris atomus do not enhance algal absorption efficiency through a so-called "grinding" effect. Clams maintain a constant absorption rate of organic materials up to a concentration of 20 mg silt/liter. They are thus able to compensate for the dilution of algae by utilizing a considerable fraction (21%) of sedimentary organic materials. Growth rate of juvenile clams is not affected by silt concentrations up to 25 mg/liter, but it is significantly reduced at 44 mg/liter. Thus, growth enhancement by addition of silt, reported for mussels, surf clams, and oysters, was not found in Mercenaria mercenaria. It is suggested that these three species are better suited than hard clams for culturing efforts in turbid waters above muddy bottoms. (Modified author's abstract - J.L.M.)

Suspended sediments, a major component of seston in estuaries, exert a profound effect on food availability and feeding activities of filter-feeding bivalves. Negative and positive effects on growth have been reported. Clams (M. mercenaria) were able to sort sediment from algae, and selectively reject organic-coated and organic-free mineral particles as pseudofaeces. They also selectively rejected the larger/heavier mineral particles from a sediment suspension containing a wide range of particle sizes (up to 44 μm in diameter). Amounts of algae ingested declined with increasing sediment concentration. This decline resulted primarily from a reduction in clearance rate. Clams lost a maximum of about 22% of the algae cleared as pseudofaeces. Presence of silt produced no enhancement in utilization of algae ingested through a so-called "mechanical effect." However, clams appeared to be able to compensate for the dilution of algae by utilizing a small fraction of the organic material in the sediment. (Modified author’s abstract - J.L.M.)

Hard clams were repeatedly induced to spawn in the laboratory. Unfertilized spawned ova ranged from 50 to 97 μm and were characterized by a bimodal size-frequency distribution. In spite of high variability in egg production, correlation between size (length) and egg production was significant. Fifteen to 25% of variation in fecundity was attributable to difference in size of clams. Maximum egg production for a single female over the spawning season was 16.8 million eggs. No significant differences in fecundity, size of eggs, or larval survival were detected between clams from two diverse Bay habitats. It was suggested that laboratory spawning tends to underestimate natural fecundities. Sexes were about equal in abundance. Smallest clams to spawn was a sublegal female 33.1 mm long. Seed clams were capable of producing viable spawn, but had extremely low fecundities. Great South Bay populations are dominated by littlenecks under 4 yr of age. Clams are removed in most areas soon after they reach legal size, and intensive harvesting has caused a sharp downward shift in size-frequency distributions. A continuing shift to smaller sizes could significantly reduce total egg production in the Bay. There is evidence to support a decline in egg production with increasing age. Large cherrystones or chowders are worth using for parent stock. The current New York minimum size should be reexamined, or regulatory efforts be directed at preserving beds of larger clams. (J.L.M.)

An optimum gamete ratio of approximately 1.8 x 10^5 sperm/100 eggs was determined. Unfertilized spawned ova ranged from 50 to 97 μm and had a bimodal size frequency. Correlation between length and egg production of clams was significant: 15-25% of the variation in fecundity was due to a difference in size of clams. Maximum egg production for a female over the spawning season was 16.8 million eggs. No significant differences in fecundity, size of eggs, or larval survival were detected between clams from two diverse Bay habitats. Laboratory spawning probably tends to underestimate natural fecundity. Sex ratio was approximately equal. Smallest clams to spawn was a sublegal female 33.1 mm long. Seed clams produce viable spawn but had extremely low fecundities. (J.L.M.)

Feeding experiments were conducted to determine response of hard clam Mercenaria mercenaria (52 mm shell length) to increasing sediment concentrations. Clams were fed mixed suspensions of Pseudokokkhus pyritis (50 and 150 cells/μL) and bottom sediments (0 to 44 mg/L). Algal ingestion rate declined with increasing sediment loads. The reduction was of similar magnitude for juvenile (13 mm) clams. Loss of algae in pseudofaeces increased with increasing sediment loads, but even at highest silt and algal concentrations, clams lost a maximum of only 18% of the algae cleared from suspension. Thus, pseudofaeces production is not expected to cause significant loss of algal food at sediment concentrations normally encountered in the natural environment (240 mg silt/L). Integration of physiological rate measurements suggests that at moderate to high algal concentrations (2700 μg C/L), growth improvement by addition of diet, documented as mussels, surf clams, and oysters, is unlikely to occur in M. mercenaria. It is suggested that a suspension feeding bivalve’s success in maximizing energy gain in a turbid environment depends on a combination of two features: a high selection efficiency and a high rate of pseudofaeces production. It is proposed that species which regulate ingestion primarily by producing pseudofaeces are better adapted to cope with high suspended sediment loads than species like M. mercenaria, which control ingestion mainly by reducing clearance rate. (Modified authors' abstract - J.L.M.)

Mercenaria mercenaria was pulse-fed labeled microalgae. Clams absorbed approximately 14% of the 13C ingested. When clams were fed Pseudokokkhus pyritis, a "good" food source, the gut residence time of 13C was greater than that of 12C. Thus, analysis of a single faecal sub-sample can cause significant error in calculated absorption efficiency. Therefore, pulse-chasing, or recovery of faeces over a fairly extended period of time, is strongly recommended. Examination of the time course of 13C egestion revealed that the gut passage time of P. pyritis, which was absorbed with 82% efficiency, was significantly greater than that of two chlorophytes (Nannochloris atomus and Stichococcus sp.) and two cyanobacteria of the genus Synechococcus, which are inefficiently utilized by M. mercenaria. Clams are able to sort different algal species as they pass through the gut. Control of gut clearance rates, through more rapid elimination of those algal species which are also poorly utilized, may contribute to the species adaptive strategy. (Modified authors' abstract - J.L.M.)

Growth rates of clams Mercenaria mercenaria were not significantly affected by sediment concentrations up to 25 mg/L. Significant reduction in growth and condition of clams occurred at 44 mg silt/L. Growth enhancement by addition of silt to an algal diet, reported in mussels, surf clams and oysters, was not found in Mercenaria mercenaria. It is suggested that these species are better suited than hard clams for culturing efforts in inshore turbid waters above uncompacted, muddy bottoms. (Modified authors' abstract - J.L.M.)

Two bacterial strains of Vibrio were implicated in a recent outbreak of disease in larvae of Crassostrea virginica at a Long Island shellfish hatchery. Juvenile clams (presumably hard clam) held at the hatchery were affected by the disease that occurred during the summer of 1979. (J.L.M.)

Prices at Fulton fish market for three sizes of hard clams (Mercenaria mercenaria) were examined for the period Jan. 1973 to Dec. 1982. Prices for littlenecks were highly seasonal and showed the effect of individual holidays. Prices of cherrystones generally followed prices of littlenecks with a strong seasonality factor. Chower prices generally trended upward, but did not show the strong seasonal price changes of the two smaller sizes. Other factors which affected supply and demand, such as area openings and closings and shellfish-transmitted disease events were also examined. (Modified author’s abstract - J.L.M.)

Moving out the learning curve: An analysis of nursery operations for the hard clam Mercenaria mercenaria (Linne) in South Carolina. J. Shellfish Res. 3(1):85 (abstract).

From Sept. 1980 to Dec. 1981, a total of 19,733,000 seed clams were imported into the nursery. Of these, 13,008,000 remained in the nursery at the end of the year; 3,407,000 were planted in the field; 14,700 were returned to the nursery. Apparent mortality was 3,377,700 clams during the 15 months. This 16.9% mortality is misleading because the number of clams in the nursery was rapidly increasing over the period. With a correction for mortality, a detailed budget analysis was given and linear programming was employed to determine optimal importation strategies. (Modified authors’ abstract - J.L.M.)

Moving out the learning curve: An analysis of hard clam, Mercenaria mercenaria,

Trident Sea Farms Company has a cooperative venture with the South Carolina Wildlife and Marine Resources Department in which Trident Sea Farms provides total capital funding while the Marine Resources Research Institute of the South Carolina Wildlife and Marine Resources Department provides technical direction and scientific expertise. The South Carolina Sea Grant Consortium provides funding for scientific research and staff time for some of the analytical work. Seed stock is purchased from commercial shellfish hatcheries which provide set averaging 1 mm in size. These small animals are placed in trays or upflow sites where estuarine water is continuously pumped over them. No supplemental feeding is used. When they reach a size of 8-10 mm they are placed in fixed or moveable wire trays for field growth, and placed in the intertidal zone of a salt marsh creek. There they grow to a size of about 25 mm. At this stage the trays are opened and clams are sorted and replanted at about one-quarter the density in less well protected trays. These trays are placed in the intertidal zone again and the clams are allowed to grow to marketable size of about 50 mm. The report analyzes the economics of the nursery during the first 18 months of operation. It is concluded that the nursery system works as it was designed. (J.L.M.)

A high prevalence of several types of lesion was found: neoplasia in Mya, and hemocytosis, hyperplasia, and liposarcinosis in both species. The results are preliminary. The field survey indicates that the environment at Quonset/Davisville may be polluted to the extent of having a detrimental effect on the health of clam populations. It was recommended that fishing of Mya and Mercenaria not be allowed until the populations have been analyzed for hazardous organic chemicals. (J.L.M.)

A survey of the available mollusk literature shows that reproductive effort is higher in semelparous species (29.9%) than in iteroparous species (18.21%) to which Venus (Mercenaria) belongs, and that in iteroparous species reproductive effort increases with successive breeding seasons. Oviparous species like Mercenaria were found to divert considerably more into reproduction than viviparous species (24.24% vs 5.25%, respectively). (J.L.M.)

58 Buckner, Stuart C. 1981.

Seed clams (Mercenaria mercenaria) of mean shell length 3.6-6.9 mm were planted in various culture systems during a 2-yr period. All systems were located in a saltwater basin where clams were held in protected enclosures. Best growth and survival were obtained at the larger sizes of clams. Estimated cost per clam was similar in stacked trays and on prepared bottom. Stacked trays were more productive per area because greater quantities of clams could be grown. Bottom plots have one advantage, however, because their low visibility reduces the possibility of vandalism. To increase cost-effectiveness, the entire process—from protected grow-out of seed to transplantation to public grounds—should be completed as quickly as possible. The applicability of hard clam culture as a resource management tool needs to be thoroughly evaluated. The appropriate scale at which seeding can make a contribution to the resource should be established. Each agency must then determine the extent of the contribution required to meet its needs in light of the goals of its shellfish management effort. (J.L.M.)

59 Buckner, Stuart C. 1983.

In the 1960s and 1970s production of hard clams Mercenaria mercenaria increased appreciably in Great South Bay, the most important hard clam producing area in the world. It reached its peak in 1976. This increase in production has been attributed to a shift in fishing effort following collapse of the Bay's oyster fishery, a series of excellent sets in the 1960s, and steadily increasing clam prices. Signs of stress on the resource appeared in the mid-1970s as greater numbers of baymen entered the fishery at a time when the rate of increased production was slowing down. In 1974 the Town of Islip began a Shellfish Management Program aimed at maintaining production. This included stock assessment programs to develop information on abundance and distribution, growth rates, mortality rates, and recruitment. The harvestable population in certified areas has declined from an average of 65 bushels/acre in 1976 to less than 35 bushels/acre in 1980. From 1974 to 1980 the average daily catch per man declined from about 3.05 to 1.75 bushels, and the greatest reduction in catch was in the littleneck size category. The program also included stock-enhancement programs by transplants, spawning relays, and mariculture. These programs were successful only in localized areas and for short periods of time because harvesting pressure was so intense. Their effects were compounded by inadequate law enforcement. Alternative management strategies need to be developed if production is to be increased. A most important aspect of the plan is to limit access to particular areas of the fishery on a rotating basis, to rebuild stocks to productive levels. More funding will be required to explore the full potential of these programs. (J.L.M.)

60 Buckner, Stuart C. 1983.

Overwhelming agreement was reached on the following points: 1) A multidisciplinary approach is the most effective method to develop viable solutions; 2) local government must continue its management efforts; 3) more stringent management controls must be imposed; 4) more enforcement officers and tougher enforcement procedures are needed; 5) tighter public health regulations and better inspection procedures are necessary; and 6) substantial increases in funding will be required. (J.L.M.)

Abundance, distribution, growth, morality, and recruitment rates of populations of hard clams (Mercenaria mercenaria) were studied in a portion of Great South Bay, NY. Surveys were done in two successive years, and population characteristics were examined separately in certified, uncertified, and leased shellfishing areas to determine the effects of different forms of exploitation on the population. Significant differences in mean density were found in both years among harvestable populations in all areas. Substantial reductions in abundance of harvestable stock occurred throughout the study area. Harvest mortality was the major factor. Predicted levels of mortality were sufficient to maintain existing population levels only if harvesting were greatly reduced. Such reductions were not expected, and it was predicted that abundance and catch would continue to decline. The intensity of fishing in conjunction with reductions in abundance and catch, as well as the presence of characteristic symptoms associated with the size and age composition of an overharvested population gave strong evidence that the resource has been overfished. It was concluded that management measures are needed to control the rate at which the resource is being exploited. A management strategy is described. (J.L.M.)

62 Buckner, Stuart C., and Barry D. Andres. 1978.

A method for quantitative survey of the hard clam population was adapted for use, and applied in a 20,000-acre area managed by the Town of Islip. The clamshell bucket was most suitable. The size of the sample was more closely controlled; an intact section of bottom was removed with all included organisms; and the natural appearance and position of organisms in the bottom could be observed. Also it was found that this method permitted satisfactory sampling to depths at which hard clams were found under all substrate conditions, except in extremely rocky areas. (J.L.M.)

63 Burnett, Jay. 1981.

Harry Clawson of Trident Sea Farms Co. in Charleston, South Carolina, is playing a major role in developing an emerging industry in commercial clam production. Working with South Carolina Sea Grant, his company is studying the feasibility of intensive hard clam (Mercenaria mercenaria) culture. The raceway system allows them to purchase seed clams too small for field planting and grow them to field size. The raceways presently maintain 5 million seed clams and plans to double that. When clams are ready for field planting they are held in wire baskets in steel reinforced cages. The entire operation takes 18 months. Clawson is confident the program will prove commercially valid within 5 yers. (J.L.M.)

64 Busby, Derek S. 1986.
Estuaries are among the most productive ecosystems on earth. One species which has recently experienced a rapid growth in production and value is the hard clam, *Mercenaria mercenaria*. The east coast of Florida is the southernmost extent of the range of the northern quahog, which extends as far north as Nova Scotia and the Gulf of St. Lawrence. They have also been introduced to Florida's west coast near St. Petersburg and a small fishery now exists there. Southern quahogs, *Mercenaria campechiensis*, occur from Chesapeake Bay to as far south as St. Lucie Inlet and are also found in the Gulf of Mexico, Yucatan, and Cuba. The calm, shallow flats of the Indian River Lagoon are ideal for this clam which may be found from just below the surface to depths as great as 50 ft. Growth rates in Florida may be three times that of clams living in northern waters. In Tampa Bay they have reached a size of 2½-3 inches by the end of the second year. Changing climatic conditions in the past few years have contributed to significant increases in clam production. In 1984, 1.7 million pounds of mussels worth $6.1 million were landed. Part of this increase has been caused by improvement in depuration technology. The economic success of the clamming industry in the Lagoon has brought clammers from as far away as Massachusetts. This has placed burdens on the enforcement branch of the Florida Department of Natural Resources. The health of the industry is tied to the health of the Lagoon itself. Mariculture is being considered. (J.L.M.)

Mercenaria mercenaria embryos exposed for 48 hours to mercury had an LC₅₀ of 4.8 ppm, and larvae exposed for 10 days had an LC₅₀ of 14.7 ppm. Embryos exposed to silver for 48 hours had an LC₅₀ of 20.0 ppm, larvae exposed for 10 days had an LC₅₀ of 32.4 ppm, and adults exposed for 96 hours had an elevated oxygen consumption and showed a silver uptake by the gills. *Mercenaria mercenaria* also showed elevated oxygen consumption at lower concentrations of silver. (J.L.M.)

The device is a cylinder glued to an acrylic base. The bottom of the cylinder is divided into four equal parts by thin plastic vanes. A sample of mud and small clams is split by placing the sample in the splitter, adding enough water to fill it, sealing the cylinder and shaking vigorously. (J.L.M.)

Hard clams (*Venus (Mercenaria)* sp.) have been found in offshore waters of North Carolina Attempts to produce commercial quantities were unsuccessful because seas were often too rough, the water was deep, and the bottom was extremely soft. This was corrected by adding chain bridles, control chain, and accumulator chain. Commercial-size catches averaging 6 bushels of clams per 30-minute tow were taken consistently when other types of gear averaged only 1 to 2 bushels per 30 minutes. (J.L.M.)

Clam mariculture projects on state-owned submerged lands will require a lease. Mariculture can be a valuable asset to the shellfish industry but not if it is done at the expense of the Lagoon. (J.L.M.)

Changes in the area of secretion of adjacent aragonitic shell layers have yet to be thoroughly evaluated for their utility as records of environmental change independently of growth band and internal growth increment variations. Such changes are commonly described or illustrated in connection with studies of shell growth in the veneroid *Mercenaria mercenaria*. (J.L.M.)

The title is sufficiently descriptive. Consult the original paper for details. (J.L.M.)

Mineralogy and microstructure are described and illustrated. Consult the original paper for details. (J.L.M.)

Research has established that 8-mm hard clams survive better in field planting than smaller sizes. For various reasons commercial hatcheries are often unable to fill the demand for larger seed. Most operators prefer to sell smaller (2-4 mm) clams and structure their price schedules to encourage sale of smaller seed. It may be more economical for the clam planter to operate a nursery of postlarval- to field-size seed. Methods and problems associated with nursery culture are discussed. (Modified author's abstract - J.L.M.)

The hard clam *Mercenaria mercenaria* has a good market demand; it is a hardly, relatively fast-growing species with few reported diseases; the technology for growing hard clams is available, and a number of successful clam farms are already in operation. Fourth, and perhaps most important, the maximum price is offered at the smallest size marketable. The field grow-out phase requires the lowest investment and has the best cash flow and profit potential. This phase is recommended for starting clam growers. Proper sized seed can be purchased from commercial hatcheries. (J.L.M.)

Mercenaria mercenaria is found in nature at salinities above 12.5‰. Experimentally the minimum salinity is also 12.5‰. Larvae appear to require a slightly higher salinity than juveniles or adults. (J.L.M.)

A manual developed for nonprofessionals. The methods were developed and tested by the staff of the VIMS Eastern Shore Lab. They are not always as technically advanced as the state of the art allows, but they work, are easy to learn, and relatively inexpensive. They are cost effective. For details the manual will have to be consulted. (J.L.M.)

For clammers who wish to start trial plantings with aggregates VIMS offers the following suggestions: 1) select aggregates that are cheap and plentiful in your area; 2) before buying in bulk test to see if particles are heavy enough to sink and remain on bottom, and are small enough to pack well; 3) spread over planting area to a thickness of at least 1 to 3 inches; 4) scatter seed clams evenly over the aggregate at a rate of about 25-50/ft². 5) aggregate can be put on bottom any time of year, clams should be planted at 48°F or higher when they are still active, plant at slack tide to avoid excessive clumping or scattering. (J.L.M.)
77 Castagna, Michael, R.S. Bisker, Henry Dynsza, and John N. Kraeutner. 1984.
A number of diets formulated from inexpensive agricultural or fishery products were tested for promotion of growth in postset hard clams (M. mercenaria). Meal-type diets were mixed in a weak brine solution and pumped into the test containers at preset rates. Increases in shell height and dry weight were used as indicators of growth. Significantly higher growth rates were observed in clams fed certain diets. These diets are being refined and will undergo further testing. (Modified authors' abstract - J.L.M.)

78 Cerrato, Robert M. 1980.
Molluscan populations are used to illustrate how population attributes can be deduced from an analysis of shell characteristics. Many group attributes can be derived directly or indirectly from an evaluation of the class-frequency histogram. (J.L.M.)

In January 1980 a storm broke through the barrier island just east of the present inlet. The breach eventually merged with the original inlet, creating a broadened connection with the Atlantic Ocean. The breach was filled by 1981, but throughout most of 1980 Moriches Inlet was substantially widened. Microstructural growth increments in shells of Mercenaria mercenaria were examined in 6 to 18 month-old individuals collected at two stations, one in the eastern and one in the western half of the Bay. Average monthly growth at the eastern station was 1.76 mm in 1980 and 1.82 mm in 1981. At the western station average monthly growth was 1.6 mm in 1980 but was substantially higher. 2.3 mm, in 1981. The breach had no effect on the population in the eastern bay but may have caused slower growth rates in individuals from the western bay. (Modified authors' abstract - J.L.M.)

80 Chanley, P. 1967.
 Larvae of 23 species, including Mercenaria mercenaria were identified and described. Identification aids include: 1) comparative photomicrographs of typical larvae arranged by sizes; 2) graphs of length-height relationships for interspecific comparison of larvae throughout development; 3) tables of dimensions and umbonal shapes; 4) keys to straight-hinge and umbonate larvae; 5) indirect aids (summing seasons and geographic distribution); and 6) brief descriptions of each species. Combined use of all aids is recommended for identification of larvae. Large larvae are easier to identify than smaller ones, so workers should begin with umbonate larvae and progress to smaller individuals. (Modified author's abstract - J.L.M.)

81 Chantler, P.D. 1983.
Reference is made to Mercenaria mercenaria studied by other authors abstracted elsewhere in this bibliography. (J.L.M.)

82 Clark, George R., II. 1979.
The use of seasonal growth lines in bivalve mollusk shells to determine prehistoric human occupation patterns is a relatively new concept. To achieve this potential it is essential to determine the relationships between the seasons and the growth lines unambiguously, and also highly desirable to understand the fundamental causes, i.e., the environmental stimuli, as well. Examination of a limited number of prehistoric shells showed that death had occurred about 2 months after a major stress period, and analogy with recent Mercenaria mercenaria shells suggests that they were harvested in December or January. The paper is illustrated with numerous photomicrographs of shell sections. (J.L.M.)

83 Clark, George R., II. 1980.
Preparation and examination of skeletal materials for growth studies. Part A. Molluscs.
Acetate peels have largely replaced thin sections in recent research on shell structure and growth lines. They provide much less information than thin sections, but can be prepared in a fraction of the time. The introduction of low-speed diamond saws now makes it possible to prepare high-quality thin sections nearly as easily as acetate peels, and this may reverse the trend. Preparation of thin sections is described. (J.L.M.)

84 Clark, George R., II. 1980.
Preparation and examination of skeletal materials for growth studies. Part A. Molluscs.
Complex crossed lamellar structure, and prominent growth lines in Mercenaria mercenaria formed by concentration of organic matter are illustrated by scanning electron micrographs. (J.L.M.)

Shells from New Jersey, North Carolina, and Georgia exhibited reasonably regular patterns, with reasonably consistent relationships to the time of year. Shells from Maine, near the northern limit of the range, exhibited irregular and nearly continuous patterns of stress beyond the juvenile stage. Differences in timing of events was greatest between North Carolina and New Jersey, where features characteristic of winter in one locality could occur in summer in the other. Mercenaria shells have great potential for seasonality studies, but interpretations should be restricted to shells with regular seasonal patterns and should be based upon studies of local living populations. (J.L.M.)

86 Clark, Robert Hugh. 1953.
The most rapid rate of growth and the greatest increment of growth occurs in young specimens in length classes 40-70 mm long with 1-4 “annual rings”. Growth rings were much more difficult to determine in older clams with 8 or more “annual rings”. Two types of rings were observed: 1) thin “disturbance rings” which were more numerous than “annual rings” probably caused by sudden and short changes in the environment; and 2) thick “annual rings” probably caused by seasonal changes in the environment. Shell weights of specimens from Pocomoke and Tangier Sounds were significantly greater than shell weights of clams from Sinepuxent Bay, MD, and Avon, NC. As length increased, the number of “annual rings” increased also. (J.L.M.)

87 Claus, Christine. 1981.
In Dennis, MA, Mercenaria mercenaria is grown on pure algal strains cultured in large outdoor tanks. Mortality in a controlled onshore nursery installation is expected to be 20-60% for Mercenaria mercenaria. Thirty-day values for the instantaneous growth rate of 3-mm spat is optimal at a temperature of 20°C. From an economic viewpoint the artificial heating of large volumes of seawater needed for commercial mollusc production is theoretically prohibitively expensive, but waste heat from a power plant may be a solution. Some advocate use of marine cooling water as a culturing medium, but indirect use of thermal effluents of all kinds might be more interesting. A suitable water current is required to stimulate feeding and carry away faces. There is a significant correlation between flow rate and filtration rate. The regulation of filtration rate is influenced by cell density and by algal size. Optimum cell concentration of a medium-size algal species of 100 µm² (±6 µm) diameter is ± 25 cells/µL for Mercenaria mercenaria. Presently it is impossible to draw firm conclusions with regard to the future of mollusc nurseries. All systems presented in this paper have proven to be biologically feasible but the economics should be evaluated. The margin of profit in a nursery operation is very narrow. This is a review paper and only specific references to M. mercenaria have been recorded. The entire paper should be read for details. (J.L.M.)

The entire publication is worth reading, although some papers do not mention Mercenaria mercenaria specifically. In addition, the roundtable discussions (p. 310-335) contain useful material. Papers that mention Mercenaria mercenaria are abstracted elsewhere in this bibliography. (J.L.M.)

Mercenaria mercenaria is not mentioned. Species examined were Ostrea edulis, Crassostrea gigas, and Venerupis semidecussata. Even very eutrophic water does not provide enough microalgae to sustain growth in winter, whether the water is heated or not. Cultured live algam must be added. Although nursery rearing of burrowing bivalves such as clams appears to be feasible, attention must be paid to shell deformations of clams in the nursery. (J.L.M.)

This paper reports on the first results obtained in Belgium at culturing postlarvae of a few millimeters to a few centimeters in size at densities as high as possible in an indoor experimental nursery with spat of Ostrea edulis, Crassostrea gigas, and Venerupis semidecussata. Mercenaria mercenaria is mentioned from a paper by Mann and Ryther (1977) abstracted elsewhere in this bibliography. (J.L.M.)

Although myosins from various muscles such as white adductor muscle and transverse adductor muscle of Mercenaria mercenaria form similar aggregates in vitro, they may form quite different structures in nature. As an example of a specialized myosin assembly, we analyzed the thick filaments of molluscan muscle. In this case the myosin assembly is directed by the underlying core of paramyosin. A possible biological role of the special design of this thick filament may be the regulation of tension maintenance. Study of the in vitro aggregates of the purified proteins provides a powerful way to comprehend the organization of the native systems. The structure and interactions of the fibrous muscle proteins are revealed by their polymorphic forms. (J.L.M.)

Preplanting surveys showed that the mean number of wild clams on the primary site was 4.3 (per square foot). No clams were found on the secondary plot. These natural densities would not support commercial operations. Clams were planted in Sept. 1977 at a density of 270 clams per square foot. They ranged in size from 2 to 4 mm. Eight live tagged clams and 11 unbroken tagged valves were found in Nov. 1977. Thus, at least some clams survived. (J.L.M.)

Describes a new law which increases criminal penalties for violation of fishery laws. Also describes public hearings soon to be held on major proposed revision of shellfish tagging and record-keeping requirements. (J.L.M.)

Juvenile clams collected from natural beds were placed in plastic trays suspended from plastic flotation collars in the intake canal of a nuclear power plant. Clams ranged in size from 2 mm to 15 mm long and were maintained according to a size-frequency distribution similar to a natural population under study. Mortality over a 5-month period was less than 10%. Juveniles on natural beds had a mortality rate of nearly 90%. Maximum growth rate in trays was 0.4 mm per week in September 1979. Influence on growth rate of 10-man clams by fouling organisms attaching to trays was examined for screens made of galvanized hardware cloth and two commercially available plastic meshes. Mortality was 5% or less in trays which held sediments in the range of 0.5-1.0 grain size and which were covered by galvanized-wire mesh. (J.L.M.)

Great South Bay has produced most of the hard clams landed in the State of New York. Within the past 5 yrs., however, landings have dropped from a peak of 700,465 bu in 1976 to 338,839 bu in 1980. The number of commercial permits issued also has declined, but the yield per permit has also gone down, from 146.4 in 1970 to 79.3 in 1980. Littlenekens are the most valuable. Baymen would benefit if a larger number of littlenekens were allowed to grow to cherrystones or chowder sizes. Sustainable net revenues of $26 to $34 million could be generated from adherence to an optimal harvest policy. The current uncontrolled fishery has an opportunity cost in the form of foregone net revenues. The gross revenue in 1980 as reported was only $18.8 million. Institution and enforcement of the necessary quotas will not be popular among baymen. But proper controls, though requiring sacrifices today, could lead to a more profitable fishery tomorrow. (J.L.M.)

Landings of clams per official permit have been declining since at least 1970, from over 146 bushels per permit per year in 1970 to about 64 bushels per permit per year in 1982. Overfishing brought about by open access to the fishery is probably reinforced by the high price of littlenekens. The hard clam resource in Great South Bay exhibits all the classic symptoms of overfishing caused by open access to the resource. A management program which includes a system of transferable harvest quotas, a system of certified collection centers, a records system, public auctions, and a modest landings tax per bushel, is proposed. Great South Bay could have generated gross revenues of between $35 and $70 million in 1980, and net revenues between $25 and $55 million, compared with the $18.8 million reported. No one can predict with certainty what a well managed fishery might be worth. But it seems worthwhile to consider new alternatives for management. If that gamble is not taken, the true potential of the fishery may never be known. (J.L.M.)

A brief account of the life history of Mercenaria mercenaria with uses of clams, fishing areas, recent landings, harvest methods, and instructions on buying and broiling. Concludes with recipes. (J.L.M.)

The amount of acreage available to oyster and clam harvest is severely limited by lack of an adequate Shellfish Sanitation Program and private ownership of most oyster and clam bottoms. Despite this, many out-of-state oyster and clam producers have recently expressed interest in Georgia's shellfish resources (including Mercenaria mercenaria). The summary includes attempts to remedy past causes of the decline of the industry and the current program of the State to encourage shellfisheries development. (Modified author's abstract - J.L.M.)

Zonation in the shell of Mercenaria mercenaria is shown in fig. 2. The soluble matrix from the shell of M. mercenaria contains about 20% carbohydrates. The B-carboxyl group of aspartic acid appears to be amidated rather than being a free acidic group in the same matrix. When alkali-induced B-elimination of the carbohydrate was tried, to detect the presence of the O-glycosidic linkage to serine, no evidence of this linkage was found in the soluble matrix of M. mercenaria. The soluble matrix from M. mercenaria specifically binds calcium. It was suggested that the pores in the mucous interlamellar membranes of several mollusks are filled with a soluble matrix
similar to that isolated from *M. mercenaria*. Some bivalves dissolve previously precipitated shell when they become anaerobic. In *M. mercenaria* shell dissolution is caused by an anaerobically produced acid with a pH similar to that of lactic acid. It was later shown that this was succinic acid, and that only 2% of the total acid was lactic acid. Analysis of body fluids and soft tissues showed that there is a stoichiometric relationship between the increase in succinic acid and calcium concentrations. Analysis of extrapallial fluid showed that succinic acid accounted for only 80% of the calcium change in this compartment. This may be accounted for by the carbonate and bicarbonate derived from the shell and by ionic exchange with the mantle epithelium. Dissolution of the shell during anaerobiosis appears to occur primarily inside the pallial line. The chalky appearance of the inner shell surface that characteristically develops with this dissolution is not found outside the pallial line even after extended periods out of water. Scanning electron micrographs show that crystals inside the pallial line have irregular edges and are poorly organized with large voids on the inner surface. Outside the pallial line the crystals have sharp edges, are well organized, and fill available space. (J.L.M.)

100 Cresswell, LeRoy. 1986.

Preliminary results show that hatchery production of hard clams in the Indian River area is feasible. Several million clam seeds were cultured at the Harbor Branch Foundation facility in 1984. This program can expand production of clam seed should the demand for cultured hard clams for mariculture increase. (J.L.M.)

This dredge was used successfully during clam surveys along the northeast coast of the United States in water depths up to 50 fathoms. Advantages of the system compared with conventional surface-supplied hydraulic dredges are ease of handling, consistency of operation, and efficiency in power transmission. The dredge and various controls are described in detail. (J.L.M. and M.W.S).

Young quahogs of the northern and southern species (*Mercenaria mercenaria* and *M. campechiana*) and both reciprocal hybrids were collected at approximately monthly intervals from Alligator Harbor, Fla. Gonad sections were examined histologically from Nov. 1974 to Nov. 1975 to determine reproductive cycles. *Mercenaria mercenaria* had three minor spawning peaks (late Jan., late Apr., and mid-Sept.). *M. campechiana* had a single spawning period with peak activity in early February. *M. campechiana × M. mercenaria* (the female parent is listed first in all hybrids) had a major spawning period (Dec.-March) and a minor spawning (May-Aug.). Data for the reciprocal hybrid were incomplete but seemed to indicate two spawnings (Dec.-Feb. and June-Aug.). Growth among the 4 groups followed the same general trends, but *M. mercenaria* had the best growth. (Modified author's abstract - J.L.M.)

All young clams were males and one or more stages of gametogenic activity were seen each month of the year. Winter spawning was considered abnormal and resulted from the unusually warm winter of 1974-75. Gonadal development of hybrid female *M. campechiana × M. mercenaria* was similar to its southern parent; the reciprocal hybrid was similar to its northern parent. This may indicate maternal influence. Little or no spawning by *M. campechiana* in the warmer months was unlike that of the other three pedigrees. Temperature was the overall controlling factor in gonadal development and spawning, but genetic differences existed between the two species. (Modified authors’ abstract - J.L.M.)

104 Dauvin, Jean-Claude. 1985.

The dynamics of a *Venus ovata* population from a muddy fine sand community at station Pierre Noire from the Bay of Morlaix has been studied with a view to estimating its production. *Mercenaria mercenaria* is mentioned only in relation to a publication abstracted elsewhere in this bibliography. (J.L.M.)

105 Davis, Harry C., and Anthony Calabrese. 1964.

Rate of growth of larvae at different temperatures was critically affected by the type of food organisms available. Clam and oyster larvae were able to utilize naked algae such as the chrysophytes *Monochrysis lutheri*, *Isochrysis galbana* and *Dictyrella sp.* and show significant growth at lower temperatures than those at which chlorophytes such as *Chlorella sp.* which have cell walls could be utilized. This implies that the enzyme systems required to digest naked flagellates are active at lower temperatures than are the enzyme systems required to digest cell walls. The cells of *I. galbana* and *M. lutheri* are destroyed by temperatures at 27.5-30°C, and growth of larvae receiving these foods at such temperatures was reduced. *Chlorella sp.* continued to increase with each 2.5°C increase in temperature up to 33.0°C. Salinity also affects the temperature tolerance of clam and oyster larvae. At near-optimum salinities the larvae survive and grow over a significantly wider range of temperatures than at salinities near the lower limits of their tolerance. We observed the temperature tolerances of clam and oyster larvae at a series of decreased salinities. (Modified authors’ abstract - J.L.M.)

Mortality among 3-mm seed clams (*Mercenaria mercenaria*) is about 95%. Blue crab is a major predator, but mud crabs, stone crabs, shrimp, snapping shrimps, bottom-feeding fishes, moon snails, and whelks also take their toll. Growth rate of clams affects rate of predation. The faster the growth, the less time is available for predation, and big clams are less vulnerable than small clams. Seed planted in winter will grow in North Carolina, so that by spring they are less vulnerable. Caging also is helpful, but it may not be cost effective. Seed clams might be held in crab shedding tanks during the off-season, growing until they reach sizes sufficient for planting. (J.L.M.)

Nearly all commercial enterprises involved in nursery rearing of bivalve molluscs in Europe use natural phytoplankton as food. In contrast, small-scale and large-scale experiments carried out in many countries have shown the potential and reliability of culturing microalgal species for nursery bivalves, in analogy to the well established algal culturing for hatchery molluscs. Some hatcheries continue to feed spat with the same species of microalgae used to rear larvae. The increasing quantities of algae needed soon becomes a limiting technological and economical factor. Scaling up of sophisticated systems used to produce monospecific algae seems to be prohibitive. Two trends are evident. The first relies on completely controlled production of specific algal species. The second is based on induction of natural phytoplankton blooms in outdoor systems. This arrives at a certain control of species composition by manipulating different internal and ambient conditions, such as nutrients, pH, detention time, and mixing. The biotechnological aspects of large-scale production of algae are discussed, and the present needs and possibilities of a more controlled way to produce food for nursery bivalves are examined. The original paper should be examined for details. (Modified author’s abstract - J.L.M.)

108 Dey, N. Dean. 1978.

Clams (*Mercenaria mercenaria*) were planted at a density of 270/l2 over the 100-l2 plots. If they were evenly distributed and all had survived, a total of 48 live clams should have been collected. The pooled samples contained eight live tetracycline-tagged *Mercenaria* for a return of 16.67%. In addition, 11 unbroken tagged valves were found, accounting for another 23% of the planted clams. Finding of marked fragments of shells indicates that predation was occurring. Growth was apparent in only one of the live clams. The results, along with return of tagged material, provided preliminary data on evaluation and success of clam planting. (J.L.M.)

Sibling populations of hard clams were raised in a controlled environment with excess algal food. Wide variations were observed in shell length and volume. Populations were divided at an early stage into five successively larger size classes. Clams in the larger size classes always grew much more rapidly than smaller clams at 18°C and 25°C. Early setting clams grow more rapidly than late-setting clams but make up only a small fraction of the population. Late-setting clams never match the growth rate of early-setting clams and remain small relative to their larger siblings. During the first 4 weeks of growth all clams continue at the larval rate. The rate of increase then decreases (growth pause) for the next 2 weeks, then rapid growth resumes but at a reduced rate typical of juvenile clams. The growth rate may be associated with growth of siphons. Fast-growing larvae make up fewer than 5% of the population, but with proper selection, fast-growing commercial strains, or uniform groups of clams, can be produced for studies of toxicology or nutrition. (J.L.M.)

The quahog, Mercenaria mercenaria, supported essentially no commercial fishery in Texas since about 1900. Prior to 1900 a small fishery did exist. The species occurs in lower Galveston Bay near Port Bolivar and near Caracabilla Reef in central West Bay and occupies a combined area of about 4 acres. A similar species, M. campechianus, occurs in Mesquite Bay and in South Bay. Charts are included showing waters closed to shellfishing. Some commercial fishery landings are also tabulated. (J.L.M.)

The smallest size class for clams, "seed" (1 inch), was the most abundant group of clams at one of four transects in the Indian River Lagoon. An average of 8 clams per 1.4 m² indicated that this area had a successful set and should continue to yield substantial quantities of harvestable clams as long as no significant die-off occurs. For size groups of clams >1-inch long, there were no obvious differences between sampling locations. At Grant (the location previously described) numbers decreased dramatically from the small "seed" clams. Either harvesting reduced the numbers of larger clams to levels similar to the other areas, or unsuccessful sets or mortality of juveniles reduced the numbers of larger clams. Successful recruitment of juvenile clams should sustain the harvest for the next 2 years at Grant, provided mortality remains low. But low recruitment in the other areas will not provide large numbers of harvestable clams. The sampling methodology used, a SCUBA-assisted suction dredge, provided a quantitative picture of shellfish populations, and should be a valuable tool in future studies. (J.L.M.)

Rates of calcium carbonate removal from shell pieces of Mercenaria mercenaria were dependent on the type of etching fluid used and not on shell origin. Etching was uniform over the entire shell surface, but surface morphology differed with etching fluids. Peak radioactivity was in early eluant fractions of shells etched immediately after radioactively labelling, and in later fractions when individuals were placed in isotope-free seawater after labelling. The etching technique can measure growth during the labelling period and subsequently by estimating the amount of calcium in fractions prior to the radioactive peak. Geometry of shell layers influenced the pattern of radioactivity seen in fractions. Peak location varied inside and outside the pallial line of individuals. A significant portion of the inorganic carbon used in shell formation was derived from metabolic CO₂. (Modified authors' abstract - J.L.M.)

The diatom Thalassiosira pseudonana was cultured in 10 µg/L14C-benzo(a)pyrene (BaP) and subsequently fed to larvae of the hard clam Mercenaria mercenaria. The rate of direct uptake of BaP from seawater by the diatoms was much greater than the rate of trophic transfer of BaP from the diatoms to the clam larvae. This was attributed to greater efficiency of direct uptake and to the larger quantity of BaP available in the water. A comparison of direct uptake by bivalves (as reported in the literature) with trophic transfer measured in the present investigation indicated that the processes may be equally important in accumulation of BaP in natural populations of bivalves. (Authors' abstract - J.L.M.)

115 Doering, Peter H. 1982.

In field and laboratory choice tests the sea star was attracted to distant upstream clams. Clams exposed to upstream sea stars were chosen less frequently by downstream sea stars than clams without sea stars upstream. Sea stars neither attracted nor repelled downstream conspecifics. When clams were exposed to upstream sea stars their oxygen consumption decreased, as did their pumping rate and activity as measured by the number of visible siphons. It was concluded that clams and sea stars sense each other over a distance by chemical cues. The response of the clam is a general lowering of activity which may result in decreased attractiveness to sea star predators. This response may serve as a defensive measure against distance detection by sea stars. (Modified author's abstract - J.L.M.)

Mercenaria mercenaria and several other bivalves were suspended near the surface, at mid-depth, and near bottom at two sites with different water depths in Long Island Sound in 1984. Growth through December was measured to determine if growth near bottom would be improved by upwelling of nutrient-rich bottom materials. Cumulative growth and relative growth rates showed best growth in summer at the nearsurface location at both sites for species deployed in July. Between August and November growth rates were highest near the bottom at both sites. For those species deployed in August, at the 10-m depth site, best growth was near the surface from August to October, but subsequent growth was greatest near the bottom. At the 20-m depth site growth was equal at all three depths from August to October. Subsequently, growth at upper levels was greater than at the bottom. (Modified author's abstract - J.L.M.)

One group of juvenile hard clams (M. mercenaria) received continuous crabmeal supplements while the control group received only maintenance seawater flow. Final dry weights of crabmeal-fed clams were significantly greater than those of control clams. Overall, the increase in wet and dry weights was 2.5 times greater in crabmeal-fed clams than in control clams. Ongoing research is being conducted to determine optimal feeding rates and commercial scale applicability. (Modified authors' abstract - J.L.M.)

118 Easley, J.E., Jr. 1982.

Some shellfish have the ability to purge themselves of contaminants after they are placed in clean water. A North Carolina management practice is to mechanically move (or relay) shellfish from polluted water to clean water for purging and later harvesting. Significantly higher returns may be earned by fishermen if shellfish moved from polluted water are placed on private or leased bottom as opposed to bottoms in public
waters. The magnitude of this higher return is discussed in an example from North Carolina, and issues affecting the size of the gain are explored. Implications for management are discussed. (J.L.M.)

Clams raised at the same density were similar in mean shell length between replicates and tidal locations at the start of the experiment. However, mean shell length of clams formerly held at a density of 869/m² was significantly smaller than at 290/m², and clams formerly held at 1159/m² were significantly smaller than both of the lower densities. These differences persisted throughout the experiment. Adjustments to reduced population densities were observed in absolute and relative growth. Shell lengths of clams formerly held at 1159/m² and 869/m² increased approximately 10 mm and 8.5 mm during the experiment compared with only 5 mm for clams maintained at 290/m². According to Ricker's (1975) definition this population of hard clams, 3-5 years of age, exhibited compensatory growth. Results also indicated that growth adjustments were influenced by reductions in population density. (J.L.M.)

By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunodiffusion, they identified paramyosin in two smooth invertebrate "catch" muscles including Mercenaria mercenaria opaque adductor. Paramyosin was also identified in five invertebrate striated muscles. Paramyosins of all these muscles had the same chain weights and were immunologically similar. All muscles were stained with specific antibody to Limulus paramyosin using the indirect fluorescent antibody technique. Paramyosin was localized to the A bands of the glycinated striated muscles, and diffuse fluorescence was seen throughout the glycinated fibers of the smooth catch muscles. (J.L.M.)

121 Endoff, Mike. 1986.
A review and summary of the proceedings. (J.L.M.)

Efficiency of utilization of a given ration is a function of temperature. Large rations can be utilized only at high temperature. Qualitative differences in diets are best explained by differential digestibility of food particles. There is little correlation between chemical composition (gross proximate, amino acid, and fatty acid) of a diet and its value as a food for bivalves. Synergistic nutritional effects of some dietary components may be due to improved balance of micronutrients or fatty acids. Results of the study applied principally to Crassostrea virginica, but some discussion of Mercenaria mercenaria also is included. (J.L.M.)

Modern, recent, and Pleistocene representatives of Mercenaria mercenaria were analyzed in great detail utilizing laser microprobe spectrometric techniques. The main purpose of the study was to determine if diagenetic chemical alteration exists in apparently unaltered skeletal material. Analysis of precision indicates that a coefficient of variation of 3.5% is possible if care is taken throughout the analytical procedure. The principal conclusions are: (1) A large range of Sr/Ca, Mg/Ca, and Na/Ca ratios is present within different portions of modern, recent, and Pleistocene representatives of hard clam and the range of values obtained decreases with increasing geological age as internal equilibration proceeds. (2) There is no significant change in the amount of Sr deposited at different times in the hard clam's life cycle; Sr is largely incorporated in crystal lattice sites, although a portion appears to be bound either in the organic fraction or on crystallite surfaces; internal equilibrium with respect to Sr within the shell seems to occur shortly after death, apparently due to equilibration of non-lattice material. (3) There is a decreased discrimination against Mg as hard clam ages, the Mg/Ca ratio does not change from modern to recent specimens, but decreases from recent to Pleistocene samples; the decrease in Mg is due to an external re-equilibration of the organically-bound portion or the absorbed portion with the aqueous environment. (4) There is a decreased discrimination against Na as hard clam matures; Na appears to be present mainly as a contaminant, and is not present in the lattice; Na increases from modern to recent samples due to an external re-equilibration of non-lattice material with seawater, and decreases from recent to Pleistocene specimens due to re-equilibration of non-lattice material with fresh water. 5) The prismatic-lamellar interface is the main pathway by which Na and Mg enter and leave the shell. 6) The order of trace element mobility in hard clam is Na>Mg>Cr, which is mainly dependent upon the site in which each element resides. (J.L.M.)

A significant density-dependent reduction in growth of hard clams (Mercenaria mercenaria) is evident. Histological evidence gives no indication that gametogenesis is affected by increased density. The amount of gonadal tissue in clams grown at three population densities was compared. Clams at the lowest density were larger, weighed more, and had more gonadal tissue than clams from higher densities. Gonadal-somatic indices showed that density-dependent reduction of growth did not fully account for reductions in amount of gonadal tissue. Results are discussed in relation to existing literature on density-dependent changes in reproduction of mussels. (J.L.M.)

Changes in gonadal condition (GSI) reflected seasonal changes in gonadal development. Similar decreases in GSI were observed in spring (May-June) and fall (Sept.-Oct.) spawning peaks. GSI varied significantly with clam (M. mercenaria) size and age. Larger clams of the same age had proportionally more gonad tissue than smaller clams. Older clams have larger GSI than younger clams of the same size. No statistical difference was detected between GSI of female and male clams of the same age and size. Clams grown at the lowest density level or at the subtidal location were larger and had proportionally more gonadal tissue than clams from high densities or the intertidal location. Size differences between treatments explained the variation in GSI between density treatments, but not between tidal locations. (Modified authors' abstract - J.L.M.)

Mercenaria mercenaria and some other bivalves were suspended at the surface, mid-depth, and near bottom in Long Island Sound in summer 1983. Growth through November was observed to determine if enhanced growth, as proposed by Rhoads et al (1975), occurred near bottom where resuspended sediment concentrations were highest. Cumulative growth and instantaneous growth rates showed best growth between June and August in clams at the surface. Between August and November growth rates were highest near bottom. Measured concentrations of chlorophyll-(a), phaeopigments, POC and PON all decreased with depth until October when distribution became more homogeneous. Seston concentrations increased with depth. The dramatic change in October coincided with the breakdown of stratification. It is suggested that food trapped by stratification was then redistributed. Settling food material became available to nearbottom animals by sediment resuspension. Enhanced growth near bottom was observed after sufficient food combined with resuspended sediment. Food availability was apparently the overriding factor affecting growth. Best growth was at the surface, not the bottom (Modified author's abstract - J.L.M.)

Mercenaria mercenaria is not mentioned. In Meretrix lusoria foreign elements accumulate on the outer surface of the shell and the amounts of S, Fe, Cu and Zn decrease with age. (J.L.M.)

New Jersey's harvest of shellfish consisted primarily of hard clam (Mercenaria mercenaria), soft clam, oyster, blue mussel, and bay scallop. A survey was conducted to determine the numbers of shellfishermen in New Jersey, the effort expended, and their harvest. Over 1000 shellfishermen responded to the questionnaire. In 1978 there were 22,225 licensed bay shellfishermen. At least 80% of license holders were shellfishing. Effort expended was 211,473 man-days, 2/3 of which were recreational and 1/3 commercial. Licensed shellfishermen took 58 million hard clams. Although commercial fishermen made up only 5% of total shellfishermen, they accounted for 96% of hard clam landings. Recreational clammers averaged 164 hard clams per day, part-time commercial 418, and full-time commercial 622. Treading was the most popular method for recreational and commercial fishermen, which is restricted to water less than 5 feet deep and primarily from April to October. The tables give considerable detail on fishermen and their activities. (J.L.M.)

129 Figley, Bill, Tom McClay, and Staff of Nacote Creek Research Laboratory. 1979.
New Jersey's oyster, hard clam, and soft clam stocks and their harvests have been declining since the late 1940s or early 1950s. The causes are pollution, habitat destruction, the tremendous demand for seafood which has led to overfishing, and in some cases environmental factors. In 1978, 58 million hard clams were harvested, which probably is conservative. The primary species sought was the hard clam, Mercenaria mercenaria, which is found throughout New Jersey estuaries where salinity is regularly above 18°/0, and occurs from the intertidal zone to depths >30 feet. They may live for 20-35 years, and reach a maximum size of 5 inches. In 1978 full-time commercial fishermen took an average of 622 hard clams per day, part-time commercial fishermen took 418 per day, and recreational fishermen took 164 per day. (J.L.M.)

Objectives were to determine how seed survival was influenced by (1) seed size at the time of planting; (2) presence, absence, and type of gravel aggregate; (3) season of planting; and (4) site selection. Site characteristics, particularly the types and abundance of predators present, were found to influence the results so strongly that general recommendations cannot be made. Mud crabs (Neopanope sayi) and whelks (Busycon canaliculatum) were the most damaging predators at sites tested. Gravel aggregate did not provide adequate protection for planted clams, and use of large (25 mm) gravel appeared to have a negative impact on seed survival. Survival exceeded 10% only among clams that were at least 20 mm long at planting. Mortalities as high as 100% resulted from plantings of such seed (23 mm) at sites having significant populations of whelks. (Modified authors' abstract - J.L.M.)

131 Finlmin, Gef. 1986.
This project will attempt to rejuvenate populations of hard clam, Mercenaria mercenaria, in Barnegat and Little Egg Harbor bays. Leased bottom will be cultivated with a hydraulic cultivator, which reoxygenates the substrate, opens up the bottom to receive clam spawn, and raises the pH level by washing away acidic sediments. (J.L.M. and M.W.S.)

132 Foster, John E. 1981.
Clam Gardening. Univ. N.C. Sea Grant Publ. 81-3, Raleigh, NC 27695. 7 p.
Reviews briefly the techniques required for artificial rearing of hard clams, Mercenaria mercenaria. Includes obtaining seed clams, leasing and permits, location suitability, and managing the clam garden. Appendix gives additional reading, personal contacts, and material suppliers. (J.L.M.)

133 Foster-Smith, R.L. 1975.
Assimilation efficiency was found to be inversely related to total amounts of Phaeodactylum ingested over periods of up to 3 hours rather than related directly to concentration of suspension or rates of ingestion. Mercenaria mercenaria was not included in the experiments. (J.L.M.)

134 Foster-Smith, R.L. 1976.
No specific mention of Mercenaria mercenaria. (M.W.S.)

Mercenaria mercenaria was included in a list of shallow bay and shore molluscan species of Staten Island in Smith (1887). Beds of quahogans were abundant locally over much of the lower harbor, and extensive populations occurred in Gravesend Bay, Jamaica Bay, and Randian Bay. Hard clams reared in Staten Island and Jamaica Bay were marketed in N.Y. City. Most N.Y. City shellfish beds were closed for public health reasons by 1921. (J.L.M.)

Acetate peels of polished and etched radial shell surfaces of Mercenaria mercenaria showed growth cessation marks caused by low winter water temperatures present in some annual increments but were not formed each year by each individual clam. This was caused primarily by differences among age groups in seasonal band formation. Clams younger than 8 years tended to form light bands in fall and spring. Older clams tended to form light bands only in spring, and winter growth cessation marks were masked by dark bands deposited from summer through winter. These differ from clam-shell growth patterns found elsewhere along the range, suggesting that time of anulus formation varies with latitude. The percentage agreement between increments and days in annual shell increments decreased with increasing age. Thus, dividing total microgrowth increment counts by 365 could underestimate age in years. (J.L.M.)

In contrast to many crustacea, marine bivalves swallow their food whole. This means that the wall of the microcapsule must be broken down in the gut, either by digestive enzymes or by a change in pH. The main aim of the paper was to demonstrate the feasibility of using microcapsules as artificial food particles for marine bivalves. In our laboratory, nylon-protein capsules were prepared on a routine basis and have been used in experimental studies on feeding and digestion and in simple growth experiments. As an experimental approach this has already been successful. Experiments were with Mytilus edulis and Crassostrea gigas, not Mercenaria mercenaria. (J.L.M.)

Mercenaria mercenaria is not mentioned. (M.W.S. and J.L.M.)

Relationship between allozyme phenotype and physiological traits depends strongly on genetic structure of the population in several bivalve species. Mercenaria mercenaria was not studied but some discussion from the literature is included. (J.L.M.)

Neutral lipids, predominantly triacylglycerides, are an important energy reserve in larvae of Mercenaria mercenaria, Crassostrea virginica, and Ostrea edulis and are metabolized under stress. Data from our laboratory and two commercial hatcheries suggest that a threshold relationship exists between egg lipid content and subsequent larval growth and metamorphosis. Under otherwise identical culture conditions eggs with a high lipid content give rise to larvae in better condition which complete metamorphosis with a higher degree of success than eggs with a low lipid content. Lipid levels in 24-hour straight hinge larvae, visualized with lipid-specific stains, may be used as an index of potential culture success. (Modified authors' abstract - J.L.M.)
141 Gaitsoff, Paul S. 1940.

The sexual reaction of Ostrea virginica is nonspecific. It can be provided by the sperm of Venus and others. (J.L.M.)

The bioenergetics of ingestion, absorption, and respiration were used to examine the voracity of hard clam Mercenaria mercenaria predation by the mud crab Neopanope sayi, the calico crab Ovalipes ocellatus, and the hermit crab Pagurus longicarpus. Crabs were several orders of magnitude more voracious than sea stars and gastropods in terms of ingestion rate. On the basis of body-weight comparisons of the prey consumed per day, however, adult crabs, sea stars, and snails consumed similar amounts of prey. Predatory gastropods and sea stars have long search and attack procedures to pursue their prey. They have specialized diets and generally prey on relatively large prey. Crabs are searchers, do not extensively pursue individual prey, have more flexible diets, and consume large numbers of small prey daily. Ingestion rates of predators are influenced by their metabolic rates and their ability to convert food into net energy. The mud crab, calico crab, and hermit crab have high absorption efficiencies and metabolic costs compared with predatory gastropods. Crabs lost larger percentages of energy via respiration than predatory gastropods. These data are consistent with the different methods of foraging used by crabs and predatory gastropods. (Modified author's abstract - J.L.M.)

Fifteen of 19 species tested consumed juvenile hard clams. Crabs had higher predation rates than gastropods, shrimp, and sea stars. Predation by crabs was influenced by clam size, crab size, crab species, temperature, and substrate. Crabs preyed upon hard clams with shell lengths up to 30% of their carapace widths. The size of prey affected the method of predation used by crabs. Predation decreased with declining temperature and resumed when water temperature rose in spring. The rock crab Cancer irroratus was observed to prey on hard clams at a seawater temperature of 0°C. Substrate type influenced predation. Crushed gravel aggregate and, to a lesser extent, sand provided protection for juvenile hard clams against predation by Neopanope sayi, Ovalipes ocellatus, and Pagurus longicarpus. (Modified author's abstract - J.L.M.)

Injection of serotonin into the anterior adductor muscle of the hard clam Mercenaria mercenaria induced spawning. A dosage of 0.4 mL of 2 mM serotonin solution stimulated hard clams to spawn within 15 minutes. (J.L.M.)

Biological control of predation by crabs in bottom cultures of hard clams using a combination of crushed stone aggregate, toadfish, and cages. Aquaculture 47(2,3):101-104.

Use of toadfish (Opsanus tau) to control predation by crabs on juvenile hard clams Mercenaria mercenaria was tested in this field study. Hard clams 3 mm long, planted in crushed stone aggregate beds, had significantly higher survival when enclosed in cages with toadfish than in cages without toadfish. Toadfish were effective in reducing predation by crabs (Galmineles sapidus, Neopanope sayi, and Panopeus herbstii). (Modified authors' abstract - J.L.M.)

146 Gibson, Ray. 1968.

Mercenaria mercenaria is not mentioned. No measurable effects are produced upon the host and the nemertean is a true commensal. Host and worm sex ratios are about 1:1. (J.L.M.)

Langton and McKay (1974, 1976) found that growth was best in Crassostrea gigas spat fed discontinuously rather than continuously. The same phenomenon has been noted in hatchery-reared spat of Mercenaria mercenaria. (J.L.M.)

Appreciable differences in calcium phosphate concretion loads were found between different size classes of the hard clam Mercenaria mercenaria. Largest clams (41.3 mm) had significantly higher amounts of concretions than intermediate (36.5-41.2 mm) or small (25.4-36.4 mm) clams. Comparison of concretion weights in clams of comparable size from two selected sites showed that clams from restricted areas (uncertified) had significantly higher loads than those from approved beds (certified). (Modified authors' abstract - J.L.M.)

A Tahitian strain of Isochrysis sp. was grown in outdoor continuous culture and fed to juvenile Mercenaria campechiensis at five different cell densities: 5×10^3, 1×10^4, 5×10^4, and 1×10^5 cells/mL. A control group received only 1 μL filtered seawater. An additional control consisted of an identical experimental setup receiving 5×10^4 cells/mL without animals. Each treatment was fed to duplicate populations of 100 animals of 0.1 g each and each population had a whole wet weight of 10.0 g. Total flow rate to each was 120 mL/min. The control treatment of 1 μL filtered seawater gave no growth. The most concentrated treatment (56.01 μL at PPN/L) gave good growth. But better growth was obtained at concentrations of 5.75 and 11.34 μL at PPN/L. It is not clear if the algal concentration referred to in many studies on bivalves is an inflow, outflow, or some average concentration. The actual algal concentration experienced by the animals is equal to the outflow concentration in a perfectly mixed flowthrough system. The algal concentrations referred to in Winter and Langton (1975) and Winter (1978) are those immediately around the Mysitis edulis they used. Other workers are not as specific. The best feeding regime of this study resulted in 38% better growth than the natural environment. Experience will determine if this improved growth can be attained in a production scale operation. (J.L.M.)

Nitrogen balance of juvenile southern quahogs (Mercenaria campechiensis) at different feed levels. J. Shellfish Res. 1(1):75-81.

A Tahitian strain of Isochrysis sp. was grown in outdoor continuous culture and fed at four different cell densities to juvenile southern quahog. Cell densities were: 1×10^5, 5×10^5, 1×10^6, and 5×10^6 cells/mL. Controls were trays without animals receiving an inflow cell density of 5×10^4 cells/mL and trays with animals receiving only filtered seawater. Duplicate populations of 100 animals received each treatment; each population had a whole wet weight of 10 g. Total flow rate to each was 120 mL/min. Incoming filtered seawater, incoming algal culture, and effluent from each shellfish population were collected daily and analyzed for nitrite, nitrate, ammonia, urea, dissolved free amino acids (DFAA), soluble protein, total dissolved nitrogen, and particulate protein (PPN). A nitrogen balance for juvenile M. campechiensis in a continuous flow system was calculated; 85% to 95% of all total incoming nitrogen was accounted for in the different treatments. Only those populations receiving an inflow algal protein concentration of 7.5 μg at PPN/L showed a significant excretion of ammonia. Any excretion of DFAA or urea was absorbed by microorganisms present in the shellfish culture containers. Nitrite and nitrate were absorbed by algae present in the copious biodeposition of shellfish populations receiving an inflow algal protein concentration of 56.01 μg at PPN/L, and a significant uptake of soluble protein by shellfish populations receiving 5.75 μg at PPN/L was noted. (Modified authors' abstract - J.L.M.)

Commercial clam harvesting was not extensively practiced in South Carolina until recently. Newspaper reports indicated that 1120 bags of clams were shipped from Charleston, SC, to New York in 1900. Hydraulic patent tongs were used to sample clams (Mercenaria mercenaria) in the present survey. Data collected during the survey were sufficient to consider the feasibility of mechanically harvesting the clam beds. Greatest concentrations were found in the South Santee estuary (35.81% of samples contained clams), North Santee (33.74%), Little River (15.79%) and Bull Bay (10.12%). Controlled harvesting began in North and South Santee in 1974 under special permits, and the operators determined that harvesting clams with hydraulic escalator harvesters was financially feasible. Each vessel was required to complete daily log
forms with total catch per tow and fishing time, as a condition for renewal of permit. (J.L.M.)

Traces the historical progression of methods and gear used in the clam-kicking Mercenaria mercenaria fishery. The anchor method, bedstead method, oyster drag method, and the clam trawl are figured and described. In the present fishery hard clams are clams from the bottom by wash from a boat propeller and are retained in a special 12-20 ft-wide towed behind a 17-45 ft boat. The focus is on Carteret County, NC, where the fishery is believed to have started and which is still the leading clam-producing county. (J.L.M.)

Seed clams (size 3.9 mm) were held in raceways for 6 months at densities of 740, 2220, 6600, and 19,980 clams/m². Each density was replicated eight times in the raceways and the highest and lowest densities were replicated four times in subtidal field controls. Raceway clam populations were stocked in four different positions relative to water flow and in 19 different positions relative to total raceway biomass. Growth was significantly reduced at the highest density in the raceway and the field. The lowest density showed greater growth in the raceway than in the field, while the highest density showed no difference in growth between the two locations. In the raceway, growth rate was inversely proportional to distance from water inflow and to effective density (number of clams/unit water). Although clams at the highest density consistently removed the greatest amount of chlorophyll-a, less chlorophyll was removed per clam as density increased. Growth was highly correlated with stripping rate (milligrams of chlorophyll-a per clam per day) and with effective water flow rate. (Modified authors' abstract - J.L.M.)

Hatchery-raised Mercenaria mercenaria, mean size 3.9 mm, were placed in commercial nursery raceways at densities approximating 740, 2220, 6600, and 19,980 seed/m². Each density was replicated eight times in the nursery and the highest and lowest densities were replicated four times in adjacent subtidal field controls. Growth was significantly affected by planting density in raceways and field controls. Total mean growths for the raceway and the field were similar, but different factors influence growth in the two locations. Growth in raceways was inversely proportional to distance from inflows and planting density. Greatest growth was observed in the lowest density nearest the inflows and slowest growth in the highest density nearest the outflow. Growth in the field was less variable throughout the study. Clams in the raceway grew much faster than those in the field in spring, but clams in field controls continued to grow in summer when there was little growth in the raceway. These differences suggest that conditions in the two locations were not as similar as believed. (J.L.M.)

Pyruvate kinase plays a pivotal role in regulating anaerobic metabolism and gluconeogenesis in marine invertebrates. Pyruvate kinase from the posterior adductor muscle of Venus gallina can be converted into a more active form by treatment with a cyclic AMP-dependent protein kinase. (J.L.M.)

Fibrils from adductor muscles of the clam Venus (Mercenaria) mercenaria were examined with the electron microscope and found to possess periodic variations in structure. To make these structural variations visible the fibrils were treated with reagents of high electron scattering power (electron stains). Phosphotungstic acid was found to be particularly suitable. This stain combines with specific regions in the fibrils, forming a remarkably regular geometric pattern. This pattern is described. (J.L.M.)

A single large hard clam weighing 110 g had a metabolic rate about 1/4 as great as rates of mussels. Oxygen consumption was very low for the first hour, increased to a maximum at 2.0 hours, then declined to zero at 3.5 hours. Heat production was also very low for the first 40 minutes, increased to a maximum at 1.5 hours, then decreased in a stepwise manner to 0.41 J/hr gram between 3 and 4 hours. At 2.0 hours Q10 was 0.66, Q2 was 1.02, and the ratio Q8/Q2 was 0.648. (J.L.M.)

Newly set P. duplicata are probably predators from the time of metamorphosis. Clam larvae and drill larvae settle over the flat over much of the same summer period, thus it is probable that predation at this size range is very high even though not readily observable. Such predation can account for apparent lack of set in some areas. P. trisertiana larvae complete their development within the collar and are released as juvenile drills. At a water temperature of 68° F, development from ovum to collar break-up and release of juvenile drills was 30-35 days. Drills immediately attacked small clams and also fed on small mud snails. (J.L.M.)

Kicking is done with propeller wash, and the clams are picked up by towing a heavy net behind the boat. Kicking is a relatively new method, and it is much more efficient than hand raking, taking 20-25 bags of clams per day as compared with 5-6 bags. Kicking is also profitable because clam prices have risen. In 1978 the Marine Fisheries Commission closed grass beds to kicking, and now clam kicking is restricted to Core Sound. Catch per unit of effort is dropping, and the fishery has reached the point where it is limiting itself. Further restrictions may be necessary. More information is needed about clam biology and harvest methods. (Abstractor's note: It is doubtful that more information will help much. What is needed is a system to allow clams to grow to marketable size. Dividing Core Sound into three parts, closing two of them, and rotating seems to be a good thing to try. Limiting the numbers of vessels also might be good.) (J.L.M.)

To test how grass-cover affects whelk predation, 1-meter plots were denened of grass, others were left untouched. Rates of predation on naked plots were 54% from October to May and 84% from July to November. Clams on plots with grass suffered little predation. Density of clams in an area did not affect the rate of predation. Whelks tended to choose the larger clams. In late summer or fall the clam growth rate slows by 10% and the clam adds growth line. They also record daily growth lines and events in the shells. Most hard clams reach legal harvest size in 1½ years. But these clams at best have only one reproductive season. Average age of clams in Core Sound is 9 years, ranging from less than a year to 32 years. This may mean that today's harvests are cropping several years of reproduction. The pea digger and the bull rake are also being compared. The pea digger dug up more large clams than the bull rake, and covered more area. In seagrass areas, on the other hand, the bull rake took more clams and covered a greater area. The bull rake also removed twice as much sea grass as the pea digger. Kicking neither increases nor decreases production of young clams, despite the claims of kickers that this method is good for the bottom. The more intense the harvest, the greater the damage to eelgrass beds by kicking. Grass returned to the low intensity beds after 10 months, but where kicking had been of medium to high intensity, sea grass had not recovered. (J.L.M.)

The big-clawed snapping shrimp (Alpheus heterochaelis) is an important predator of small hard clams (Mercenaria mercenaria), according to Brian Beal and Charles Peterson, biologists at Morehead City, NC. Three problems of North Carolina clamners are predation, overexploitation, and pollution. Predation by blue crabs, whelks, and rays takes a heavy toll, and snapping shrimp may be responsible for some of the damage previously attributed to blue crabs. (J.L.M.)
When northern clam (Mercenaria mercenaria) beds were iced up in the winter of 1976-77, seafood dealers began to look south for a supply and the hard clam in North Carolina supplied more of the harvest. Landings doubled in 1977 from the previous year and reached a peak in 1982 of more than 1.7 million pounds. Since that time landings have dropped, and many believe that hard clams are overfished. There are unresolved arguments between hand rakers and mechanical harvesters, and various restrictions have been placed on the harvest. Included are suggestions that grounds be rotated, and that clams be moved from polluted areas to clean themselves. (J.L.M.)

Kicking up more than clams. Studying the effects of clam kicking on seagrass. Univ. N.C. Sea Grant Prog., Raleigh, NC 27695, Coastwatch Nov/Dec 1985:4-5.
Clam (Mercenaria mercenaria) kicking is harmful to seagrass beds. Plots in Back Sound were left untouched and used as controls, others were used for raking, light kicking, and intense kicking. In raking and light kicking plots seagrass biomass dropped approximately 25% after harvest, but recovered within a year. In intensely kicked plots seagrass biomass fell about 65%, and the beds did not begin to recover for two years. Four years later these plots still had 35% less sea grass than controls. Sea grass provides food, refuge, and habitat for small marine organisms, and is important for productivity of clams. Removal of adult hard clams by kicking did not enhance recruitment of small clams, and in intensely kicked plots recruitment was 95% to 15% lower. Are the clams lost to fishermen if areas are closed to kicking? No, the clams can still be taken with rakes. If they are not harvested, the clams can act as brood stock. (J.L.M.)

FMRFamide is a cardioexcitatory peptide recently isolated and identified in molluscan ganglia. FMRFamide and 5-hydroxytryptamine (5HT), the cardioexcitatory neurotransmitter in molluscs, were tested on the ventricle of the bivalve Mercenaria mercenaria. Both agents increased myocardial contractility, the intracellular cAMP concentration of intact hearts and the adenylate cyclase activity of a myocardial membrane fraction. FMRFamide was 5 to 10 times more potent than 5HT. All of the effects of 5HT, and none of those of FMRFamide, were blocked by methysargide, a specific 5HT antagonist. (Modified authors' abstract - J.L.M.)

Hard clam (Mercenaria mercenaria) supports the major commercial fishery in Barnegat Bay. The most productive clam grounds in New Jersey extend from the southern part of Barnegat Bay to Cape May. Little Egg Harbor and Great Bay are consistently the most productive waters in the State. Lower catches in Barnegat Bay are due in part to higher levels of organic pollution which limit the area available for clamming. Nevertheless, recently it is the most valuable species landed commercially in Barnegat Bay. Maximum reported landings occurred from 1950 through 1957. In the early 1960s an outbreak of hepatitis in New Jersey caused a loss of public confidence in the industry. Landings picked up again in the mid and late 1960s, but declined thereafter. Recently the decline was caused by a failure of recruitment. (J.L.M.)

A variety of animals are known to be facultative anaerobes, capable of utilizing molecular oxygen when it is present and capable of sustained anaerobiosis when it is absent. During anoxia these organisms rely upon the simultaneous catabolism of carbohydrates and amino acids. In probing the mechanisms utilized, the paper accounts for (1) maintenance of redox balance during anoxia; (2) sources of energy in the form of ATP; and (3) formation of a multiplicity of anaerobic end-products. (Modified authors' synopsis - J.L.M.)

Over the last two decades the number of license holders in the Rhode Island quahog fishery has varied from less than 800 to approximately 3,000. It is believed that this is related to the state of the economy: the higher the rate of unemployment the more licenses are bought. Between 1962-63 and 1978-79 the total number of licenses has more than doubled, and average of licensees has declined considerably. Over 60% of quahoggers derived less than 20% of their income from raking or tonging in 1962-63. In 1978-79 over 60% derived at least half of their income from quahogging. The number of full-time handrakers increased over 100%. About 35% had some college education. About 18% had no alternative skills. About 23% said they could increase their income by doing other work. If income were to drop about 25%, approximately half the handrakers would leave the industry. Most handrakers worked on the west side of the Bay, about halfway down. (J.L.M.)

168 Hughes, Roger N. 1970.
There is no discussion of Mercenaria mercenaria. This paper probably would not have been abstracted if the title has been correct in the paper from which it was taken. The full title given in that paper was: Population dynamics of the bivalves. This paper deals with the general distribution of S. plana throughout the study area, the dispersion pattern of individuals in relation to one another, and the changes in density and size-frequency structure between Nov. 1966 and Nov. 1977. The results were used to estimate annual growth, recruitment, and mortality. Growth was also estimated by using marked animals and by measuring the distances between winter rings. Records of predation by oyster catchers were also kept. Because the structure and dynamics of bivalve populations do not normally reach a steady state, some conclusions were relevant only to the period of study. (J.L.M.)

Ecological genetics of the hard clams Mercenaria mercenaria Linne and Mercenaria campechiensis Gmelin. Electrophoretic estimation of enzyme variation and the use of shell morphology as a species indicator. Ph.D. diss., Univ. Ga., Athens, GA 30602. [Diss. Abstr. Int. B. Sci. Eng. 42(10):3939.] Six samples of Mercenaria mercenaria from the Georgia coast were analyzed, using protein electrophoresis. They showed high levels of population heterozygosity, but four loci showed large heterozygote deficiencies. Samples were also taken from Massachusetts, Virginia, and Florida, and samples of M. campechiensis from Tampa and Port St. Joe, FL. It was concluded from these samples that heterozygote deficiency is caused by selection against heterozygotes. Shells were measured to see if shell shape could be used to differentiate M. mercenaria and M. campechiensis, but it was concluded that shell morphology was not a species indicator. The species form of M. mercenaria was also examined. Phenotypic frequencies ranged from 0.76% to 2.25%. Gene frequencies calculated from Maxima Likelihood Estimation were 0.04% to 0.11%. There were no significant differences between samples. (J.L.M.)

There is no mention of Mercenaria mercenaria in this study. (M.W.S. and J.L.M.)

Survey of the shore mollusc resources of the Northumberland Strait, coast of Nova Scotia. Prog. Reps., Atl. Biol. Stn. 32:8-10. St. Andrews, N.B., Canada E0G 2X0. Unexploited stocks of quahawks (Venus mercenaria) were found. (J.L.M.)

172 Jones, Douglas S. 1980.
By analyzing annual shell growth increments in Spisula solidissima and Arctica islandica two main items were determined: 1) age and growth rate; and 2) season of death. Such information can be important for several reasons. Mercenaria mercenaria was not mentioned. (J.L.M.)

Repeating layers in the molluscan shell are not always periodic. J. Paleontol. 55(5):1076-1082.
No daily, subdaily tidal, or fortnightly tidal cycles were found in shells of Spisula solidissima in samples from off the coast of New Jersey. Annual layers were the only ones found and confirmed. The five orders of periodic layers identified by Barker
(1984) were not found to be valid. Other species need to be studied carefully before their fossil relatives are used in paleobiology or geophysics. (J.L.M.)

A series of recommendations is given on size limits, intense fishing pressure, opening areas in winter when shell life is longer, relying of clams, and use of money from “clam diggers licenses.” (J.L.M.)

A study, growing oysters and clams in rafts by the Wallace Groves Aquaculture Foundation of Freeport in the Bahamas, produced discouraging results. Another study, by Worldwide Protein Bahamas, Ltd., using imported spat of American and European oysters and hard clams, Mercenaria mercenaria, from Long Island, indicated that fouling by algae and particular matter hindered production, but growth of hard clams continues. Since May 1972 the St. Croix Artificial Upwellng Project on the north shore of the U.S. Virgin Islands produced phytoplankton by pumping nutrient-rich seawater from 870 m depth into 100-m² ponds. This was used to feed oysters, clams, and scallops, which grew adequately. Molluscan mariculture in the Caribbean has a long way to go to augment catches from traditional fisheries. It is doubtful that it can soon achieve the production per unit area obtained in other parts of the world, because it is still in its infancy and many problems remain unsolved. (J.L.M.)

Predation remains one of the major hurdles to successful field mariculture of molluscs in many areas of the world. Traditional predator control methods include physical barriers such as traps and enclosures, off-bottom culture, chemical poisons, removal and trapping, dredges, mops, X-ray sterilization, and biological means. Most of these methods have produced only limited success, although two or more methods in combination, such as enclosures and active predator removal, are effective but expensive. Examples of recent attempts at predator control include substrate modifications for hard clams (Mercenaria mercenaria) and other methods for other molluscs. The ecological concepts of “site selective predation,” “optimum patch use,” “prey switching,” “ingestive conditioning,” and “search image formation” and their relevance to effective predator control in molluscan field culture are discussed. Several guidelines based on these ecological concepts emerge. Juvenile molluscs should not be planted until they reach a size at which they are less vulnerable to predators. Releasing large numbers of molluscs in some areas allows predators to concentrate their efforts, and can result in some predators narrowing their diets and concentration on the most common prey, or in a density-dependent switch in prey choice in predators whose diets only occasionally include these animals. Ingestive conditioning may reinforce these dietary adjustments. (J.L.M.)

Covers in great detail all State and local restrictions. (J.L.M. and M.W.S.)

Of various raft designs tested, economical, sand-filled wooden trays suspended from floats gave best growth and survival of hard clams (Mercenaria mercenaria). Seed clams, raft-cultured in 1979 had over 80% survival of 480,000 clams. Seeds as small as 2 mm have been successfully cultured. (J.L.M.)

179 Kassner, Jeffrey. 1982.
The reproductive cycle of the hard clam, Mercenaria mercenaria, was determined over a 2-year period at five locations in the eastern third of Great South Bay. At one location, sampling was designed to include three sizes of clams, corresponding to clams marketed as sublegs, littlenecks, and cherrystones. The gametogenic cycle of spawning transplant clams also was compared. Differences between years were greater than among the five locations. In 1978 spawning went rapidly to completion, as evidenced by a high percentage of “spent” females. In 1979 the percentage of “spawning” females was much greater. No differences were apparent among the three size classes of clams or between the size classes and the other four stations. Two critical assumptions were found not to be valid, however; It was not true that the spawning period of native clams is defined and predictable, nor that transplant clams spawn later than native clams. This suggests that introduction of spawning transplants is of questionable value. (J.L.M.)

180 Kassner, Jeffrey. 1983.
Trace metals in shellfish and growing area designation. J. Shellfish. Res. 3(1):94-95 (abstract).
Hard clams (Mercenaria mercenaria) were sampled over five locations in Port Jefferson Harbor and five locations in Setauket Harbor, Long Island, N.Y., and analyzed for copper, lead, zinc, and cadmium. In both harbors, hard clams from the station with fewest coliform bacteria did not have the lowest metal concentrations. In Setauket variability of metal concentrations among sampling locations was much less than in Port Jefferson, and in Port Jefferson overall metal concentrations were higher than in Setauket. Concentrations of metals in hard clams does not appear to be reliably related to coliform levels. (Modified author’s abstract - J.L.M.)

181 Kassner, Jeffrey. 1985.
Mariculture is not a recent development. In 1909 a New York shellfish dealer purchased 5,000 bu of naturally produced seed clams (Mercenaria mercenaria) from Massachusetts at $1 per thousand. He realized 4 bu of littlenecks for every bu of seed. Early hard clam mariculture in New York has not been well documented, but information available suggests that it may have been substantial, and Great South Bay was one area in which it was pursued. It was begun in Great South Bay some time prior to 1931 as an adjunct of the oyster industry. Conflicts developed and by 1931 many baymen believed that a minimum size limit should be established. As a compromise a ¾-inch minimum size was adopted. From 1933 to 1939 the number of bu sold in New York increased from about 30,000 to over 128,000 bu and the value of clams sold increased from slightly under $52,000 in 1933 to over $420,000 in 1942. Production of hard clams by mariculture was not recorded after 1942. Glancy was successful in spawning hard clams in the early 1930s and rearing them to over 1 inch in size, but large-scale production of hard clams was never tried. Somewhat later Shellfish Inc. became the first Long Island hatchery to sell hard clams commercially. Since that time the Town of Islip has planted seed clams on public bottom, and a few years later Babylon and Brookhaven began planting seed clams, and today these three towns and the Bluepoints Company are still planting. But mariculture accounts for only a small part of production from the Bay, and probably will not play a significant role in hard clam production from the Bay because private mariculture is vehemently opposed by baymen. (J.L.M.)

During the past 180 years the shellfish resource and its fishery in Great South Bay have undergone dramatic change, shifting from the American oyster Crassostrea virginica to the northern hard clam Mercenaria mercenaria. This came about from changes in management of the fishery and hydrology of the Bay. In the early 1800s the Bay supported a sizeable oyster fishery, but overfishing and oyster dredging depleted the natural beds by 1840. Beginning in 1880, oyster production increased, as large areas of the Bay were leased for oyster planting. Between 1910 and 1940 salinities in the Bay increased markedly caused by changes in flow through Fire Island Inlet and opening of Moriches Inlet in 1931. Oyster drills Eupleura caudata and Urosalpinx cinerea increased in abundance and few oysters survived past setting. In the 1940s dense blooms of a small flagellate that interfered with oyster feeding caused a further decline in oyster abundance and no significant oyster fishery existed after 1948. Conditions detrimental to oysters proved beneficial to hard clams, and hard clam production increased rapidly, peaking at 24,668 m³ (700,000 bu.) in 1976. Landings have since declined by more than half from overfishing and further changes in the Bay. A variety of management measures are now being tried to stabilize landings. (Modified authors’ abstract - J.L.M.)

183 Kennish, Michael J. 1977.
Microscopic analysis of 85 Mercenaria mercenaria from natural populations within a 1.6-km radius of the Oyster Creek Nuclear Generating Station showed that the thickness of daily growth increments in summer was reduced by 10 to 30% in comparison with those of clams outside the effect of thermal discharges. The accretory shell-growth pattern was occasionally interrupted by rapidly fluctuating temperatures, which caused physiological shocks to clams. Transplanted bivalves also showed similar reductions in microgrowth patterns. Also the normal prismatic shell structure was replaced by crossed-lamellar shell structure, immediately following transplanting. In addition, growth breaks appeared frequently in shell microstructure after transplantation. (J.L.M.)

Mortality of Mercenaria mercenaria in Barnegat Bay is normal and is not caused by thermal discharges. Mortality is high during the planktonic larval stages, low subsequent to spat settlement, and high again in the gonitic stage. Maximum frequency of death is between 90 mm and 65 mm in height and 5 to 6 years of age. Peak frequency of death is in summer. Mortality rates rise significantly after sexual maturity is attained. (J.L.M.)

185 Kennish, Michael J. 1978.

Thermal discharges from the Oyster Creek Nuclear Generating Station do not affect mortality in natural populations of Mercenaria mercenaria in Barnegat Bay, NJ. Hard clams collected at the mouth of Oyster Creek (strongly affected by thermal discharges) and at three control sites in the Bay showed that mortality rate curves, survivorship curves, and life tables were nearly identical for each assemblage. Mortality data recorded on life assemblages of hard clams transplanted to the substrate for 1 year at the mouth of Oyster Creek and at a single control site in the Bay showed that mortality was significantly greater in the assemblage transplanted to the control site. It was concluded that mortality of hard clams in Barnegat Bay was caused by the normal population dynamics of the species. Mortality was high during the planktonic larval stages, low subsequent to spat settlement, and high again in the gonitic stage. Mortality rates rise significantly after sexual maturity is attained. (Modified author's abstract. (J.L.M.)

186 Kennish, Michael J. 1980.

The shell of M. mercenaria is composed primarily of calcium carbonate (aragonite) and choncolin. A vertical section through a valve reveals four shell layers: 1) inner homogenous layer, 2) outer myostracum (muscle scar layer), 3) middle layer, and 4) outer layer. These are illustrated in a diagram. In youth (approximately 2 yr) the outer shell layer terminates in concentric ridges at the outer surface, with growth increments intersecting the outer shell surface nearly at right angles. When mature growth is attained, concentric ridges disappear and growth increments become recurved in shape. This stage corresponds with onset of sexual maturity and lasts 3.8 yr. The final stage is old age, and crossed lamellar structure replaces prismatic shell structure in the outer layer; growth increments become thicker and perpendicular to outer shell surface and numerous growth breaks develop. Using acetate peels and thin sections shell microgrowth patterns were studied. Cyclical growth patterns include subdaily, daily, bimonthly, fortnightly, monthly, and annual types. These patterns come from variable rates of calcium carbonate deposition or dissolution or both. Environmental conditions and a biological clock mechanism appear to control the formation of these growth patterns. Growth breaks reflect periods of environmental and physiological stress. Seven types have been documented, which develop from random or periodic events. They consist of growth breaks caused by freeze shock (winter), heat shock (summer), thermal shock, shell-margin abrasion, spawning, neap tides, and storms. These are described and figured in great detail. These can be applied to analysis of population dynamics of hard clam by using size and age distributions, growth rates, and recruitment patterns, and mortality, and inferences can be made on a variety of subjects, including varying rates of mortality, and the reason for higher mortality as the animals age. Young are added to the population only sporadically, but the population can be maintained by a single year of good recruitment. By using shell of death assemblages in stressed environments temporal and spatial changes in populations can be related to anthropogenic factors. It is possible that analysis of growth patterns could be used to reconstruct paleolatitudes, paleoclimates, and paleobathymetry through the Tertiary period. The entire chapter needs to be studied to recover all the fascinating facts contained in this paper. (J.L.M.)

Mercenaria mercenaria is the only bivalve of commercial importance in Barnegat Bay. The standing crop has declined since the mid-1960s, and commercial landings are at their lowest level since the early 1960s. Recruitment has not been successful since the early 1970s and recruitment failure, closure of shellfish beds due to poor water quality, and reduced fishing effort from adverse weather conditions have been largely responsible for lower commercial production. Hard clams are distributed in patches, and densities increase toward the southern margin of the estuary. Hard clam is currently the most valuable species landed commercially. (J.L.M.)

The Gompertz growth equation provides an accurate model of ontogenetic growth in hard clams from New Jersey waters. It yields a correlation coefficient of –0.982 when fitted to yearly height data collected from sectioned valves of 277 specimens from death assemblages from Barnegat Bay. It also predicts asymptotic height values and growth curves that are realistic in comparison with those derived from the logistic and monomolecular growth equations. Selection of the best fitting growth model for M. mercenaria depends on estimation of growth parameters in the Gompertz, logistic, and monomolecular functions. A new mathematical procedure is presented which allows for rapid calculation. It requires two steps: 1) linearization of growth functions, and 2) linear regression analysis of transformed data. Most bivalves exhibit a growth rate that decreases according to a nonlinear function with increasing age. The Gompertz, logistic, and monomolecular equations accurately describe this type of growth. (J.L.M.)

Commercially important and recreationally important bivalves, such as Mercenaria mercenaria, are particularly susceptible prey to such species as Limulus polyphemus, Callinectes sapidus, Polyplacophus duplicatus, Bucephalus spp., Euplophus canaliculatus, Urolophus cinerea, and Asterias forbesi. Some fishes feed on young hard clams. Hard clams also sometimes feed on phytoplankton that fall to the estuarine substratum as water temperature rises in spring. (J.L.M.)

Effects of thermal discharges on the microstructural growth of Mercenaria mercenaria. Environ. Geol. 1:41-64.

Mercenaria mercenaria in Barnegat Bay, NJ, were affected mainly by temperature extremes, temperature variations, tides, type of substratum, and age. Growth patterns in hard clams within approximately a 1.6-km radius of Oyster Creek showed a lower summer growth rate (10% to 25% lower) and a greater number of growth breaks (2 to 6 more per clam) than from away from the Creek. The lower summer growth rates in bivalves subjected to effluent occur because added heat in summer caused water temperatures to exceed a critical threshold for optimum growth of the species. Efficient also may upset natural spawning events in clams when abrupt changes in power station operations overlie breeding periods. Spawning may be precluded by sharp temperature changes which result in physiological shocks to the animal. (Modified authors' abstract - J.L.M.)

Details are given for embedding, sectioning, grinding, polishing, acid-etching, washing and drying, and application of acetone and acetate to acetate peels, and preparation of fractured sections of bivalve shells. (J.L.M.)

Shellfish. Chap. 7 In Kennish, M.J., and R.A. Lutz (eds.), Ecology of Barnegat
Bay, New Jersey. Lecture notes on coastal and estuarine studies, 6, p. 171-200. Springer-Verlag, NY.

Hard clam (Mercenaria mercenaria) and blue crab (Callinectes sapidus) are the only shellfish currently important in the fisheries of Barnegat Bay. The life history of the hard clam, its growth, recruitment, and mortality, and its distribution and density are described; and the status of the resource is reviewed. The hard clam has a mean longevity of less than 10 years and usually grows to less than 80 mm in shell height and length. Mortality peaks during the planktonic stages. Lowest mortality is between the ages of 1 and 5 years. It increases to a maximum in summer and winter and decreases to a minimum in spring and fall. The standing crop has declined since the mid 1960s. Poor recruitment of juveniles caused either by lack of successful larval settlement or heavy losses to predators after settling appears to be largely responsible. There was a paucity of juveniles in the population caused by year-class failure since the early 1970s. (J.L.M.)

Distribution of methylene and nonmethylenol-interupted dinoic fatty acids in polar lipids and triacylglycerols of selected tissues of the hardshell clam (Mercenaria mercenaria). Lipids 17(12):976-981.

Fatty acid profiles of polar lipids and triacylglycerols were determined for six tissues of the hard clam (Mercenaria mercenaria): mantle, gill, digestive tract/gonadal tissue, and adductor muscle. Largest concentrations of nonmethylene-interupted dinoic (NMID) fatty acids were found in gill, mantle, and foot. Structural analyses were undertaken to determine the double-bond configurations of the various NMID isomers. The major 2NC NMID species were Δ7,13- and Δ7,15-docosadienoic acid. The major 20C NMID species were Δ7,11- and Δ7,13-eicosadienoic acid and Δ5,11-eicosadienoic acid. (Modified author's abstract - J.L.M.)

Total lipids and lipid classes from six tissues of Mercenaria mercenaria were determined. Polar lipids accounted for the largest fraction of lipids. The highest concentration was found in the gill. Free sterols were found only in trace amounts in the gill, but were found in much higher quantities (up to 22.6%) in other tissues. The largest stores of triacylglycerols were in the digestive tract, gonads, and the adductor muscle. Relative tissue weights and lipid contents of six tissues from the hard clam were:

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Wet wt.</th>
<th>Dry wt.</th>
<th>Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestive tract-Gonads</td>
<td>48</td>
<td>33</td>
<td>5.35</td>
</tr>
<tr>
<td>Adductor muscle</td>
<td>18</td>
<td>34</td>
<td>0.44</td>
</tr>
<tr>
<td>Mantle</td>
<td>12</td>
<td>10</td>
<td>2.63</td>
</tr>
<tr>
<td>Gill</td>
<td>8</td>
<td>7</td>
<td>1.86</td>
</tr>
<tr>
<td>Foot</td>
<td>7</td>
<td>12</td>
<td>1.25</td>
</tr>
<tr>
<td>Mouth</td>
<td>7</td>
<td>3</td>
<td>0.43</td>
</tr>
</tbody>
</table>

(J.L.M.)

Sediment as a source of trace metals to the hard clam, Mercenaria mercenaria. Masters thesis, State Univ. N. Y. at Stony Brook, NY 11794, 111 p.

Metal concentrations of clams varied primarily with physiological state as determined by seasonal and genetic factors. Seasonal patterns of uptake of all metals were similar to seasonal changes in dry flesh weight. Maximum increases in body burden corresponded to periods of rapid growth in fall and spring. However, metal body burdens increased 1 or 2 months prior to dry flesh weight in spring, and with the exception of lead, metal content remained constant over winter. Possible differences in feeding activity, arising from small differences in grain size of experimental plots, may have contributed to observed differences in clam copper concentration. Of the six metals studied (Cd, Cu, Fe, Ni, Pb and Zn) only copper showed clear differences in concentration among clams from different plots. Exposure to more readily available dissolved and suspended copper sources was more critical in determining copper concentration than exposure to copper associated with sediment. However, in muddy environments, where clam filtering activity is reduced, exposure to dissolved and particulate copper sources is lower, and uptake from sediment may become more important. (Modified author's abstract - J.L.M.)

Feasibility of establishing a large scale, publicly supported hard clam seed hatchery/nursery system for rehabilitating bay resources after an oil spill disaster. Long Island Regional Planning Board, N.Y. S. Comptroller's Contract D000369, CEIP Grant-In-Aid Award NA-83-AA-D-C0205, Hauppauge, NY 11788, 103 p.

Objectives of the study were to: 1) estimate the potential impact of spilled oil on the hard clam (Mercenaria mercenaria) and its associated habitats; 2) identify the full range of techniques and methods to remove spilled oil and hasten recovery of habitats and hard clam populations; 3) discuss the shellfish hatchery, land-based nursery, and field-nursery facilities required to produce seed clams for planting; and 4) prepare and apply site selection criteria and identify potential sites for land-based facilities. If a decision were made to implement a massive hard clam seed-planting program to mitigate oil spill impacts, this report could be used to address the following questions: a) should a publicly-financed shellfish hatchery be constructed, and where? and b) should land-based and field-based nursery facilities be constructed, and where? The appendix to the report contains capsule summaries of hard clam seed-planting programs being conducted by Long Island towns, and descriptions of the facilities and capabilities of the five operating shellfish hatcheries located on Long Island. (J.L.M.)

Carver and Cantelmo have studied the efficiency of commercial deputation. Clams (Mercenaria mercenaria) taken from marginally contaminated waters could be effectively depurated and thus release 26,000 acres of condemned waters in New Jersey for harvesting hard clams. Also clam siphoning activity seems to increase under certain conditions, as some clams are spurring others to more active states. (J.L.M.)

Eggs were graded into three size categories, split into replicates, and these were replicate-sampled. A chi-square analysis compared the proportion of larvae (48 hr survival) with the proportions of eggs in each initial replicate experiment. Statistically significant differences attributed to egg size were found. Large eggs survived better than small eggs, while those of intermediate size showed no difference between expected and observed survival. (Modified authors' abstract - J.L.M.)

The community of larger benthic animals is not dominated by finfishes but by dense populations of hard clam Mercenaria mercenaria. In the West Passage near the Jamestown Bridge an estimate of 35-40 b. (80 pounds) per acre was determined by survey prior to the commercial dredging season. Although the subsequent harvest lowered the population to 14 b./acre, it can be assumed that some replacement of the loss occurred, and 35 b./acre was chosen as a reasonable stock estimate. Prorated population estimates ranging from 3.23/m² near the mouth of the Providence River to 0.65/m² near Newport were used (clams/m³). (J.L.M.)

Commercial catch-and-effort records for boats using patent tons to harvest hard clams from the James River were obtained for 1978-81. Catch-per-unit-effort of the sample fleet was regressed against accumulated catch to give estimates of initial abundance. Estimates for 1978, 1979, 1980, and 1981 were 280,650 b., 406,250 b., 557,250 b., 344,364 b., and 397,142 b., respectively. The mean for the period, 397,142 b., was 30% below that estimated by Haven et al. (1981). Commercial catch records can be used in this application but limitations in the data must be understood. (Modified authors' abstract - J.L.M.)

Mercenaria mercenaria was not mentioned. The collagen of Cryptochiton stelleri isolated from the visceral area had a different biochemical property from the mantle girdle, which was in direct contact with the ocean. The visceral area was protected from the environment by the eight plates. The collagen of Loligo pealii eluted as a single homogeneous hydrophilic peak. Collagen from Octopus bimaculatus was also hydrophilic but exhibited great diversity within this region. (Modified authors' abstract - J.L.M.)
202 Larkin, Edward P., and Daniel A. Hunt. 1982. Bivalve mollusks: Control of microbiological contaminants. BioScience 32(3):193-197. Voluntary cooperation between the shellfish industry and government agencies has reduced the incidence of shellfish-borne disease. Contamination of bivalve mollusks including hard clams (Mercenaria mercenaria) by bacterial pathogens, viruses, and toxin-containing phytoplankton is controlled by harvesting shellfish only from approved waters and by use of sanitary food-handling practices. Although market shellfish in the United States are usually of high quality, control agencies and the shellfish industry cannot guarantee that raw shellfish will be free of disease producing organisms or toxic substances. (J.L.M.)

205 Le Borgne, Yves. 1981. Nursery culturing of postlarvae: Key to further development for bivalve molluscs hatcheries. In Claus, C., N. De Pauw, and E. Jaspers (eds.), Nursery Culturing of Bivalve Molluscs, p. 141-149. Spec. Publ. 7, Eur. Maricult. Soc., Bredene, Belgium. Mercenaria mercenaria is among the species discussed. If the goal of the nursery is to provide customers with a product meeting their demands at a price competitive with natural spatfall, nurseries play an essential role. Hatcheries can produce very large numbers of very small spat at low cost, but they are of no use to most professional growers. Only after an additional growth period in a nursery can the product reach a wide market. Success of the nursery stage is a condition for development of controlled reproduction. Nurseries' technical problems seem to be easier to solve than those of hatcheries that have received less attention in research. Yet here one may expect the most spectacular improvement in productivity, with survival rates increasing from 50% to 80%. The additional number of spat has indeed a much higher commercial value than an equivalent number of larvae. (J.L.M.)

206 Lehman, William, and Andrew G. Szent-Gyorgyi. 1975. Regulation of muscular contraction - Distribution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66(1):1-30. Control systems regulating muscle contraction in approximately 100 organisms including Mercenaria mercenaria have been categorized. Myosin and actin-control operate simultaneously in most invertebrates, but single myosin control is present in muscles of molluscs and some other groups. (J.L.M. and M.W.S.)

207 Leslie, Mark D., and Robert S. Wilson. 1983. Effects of light and gravity upon the motile behavior of trochophore larvae of Mercenaria mercenaria (Linné). J. Shellfish Res. 3(1):96 (abstract). Results showed a random distribution of larvae in horizontal dark and horizontal light experiments, a substantial surface aggregation in the vertical dark chamber, and a decrease in surface accumulation with the light source shining from above and below the vertical chamber. Illumination from below caused a significant drop in vertical velocity and swimming speed and a small decline in rate of change of direction. Phototaxis was not observed. Photostimulation caused trochophores to exhibit a negative orthokinesis with a weakening in their negative geotactic behavior. (Modified authors’ abstract - J.L.M.)

208 Levine, Rhea J. C., Myra Elfrin, Maynard M. Dewey, and Benjamin Walcott. 1976. Paramyosin in invertebrate muscles. II. Content in relation to structure and function. J. Cell Biol. 71(1):273-279. By quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, paramyosin:myosin heavy chain molecular ratios were calculated for three molluscan muscles including Mercenaria mercenaria opaque adductor, and four arthropod muscles. These ratios correlated positively with thick filament dimensions and maximum active tension development in these tissues. The role of paramyosin in these muscles was discussed with respect to the following characteristics: force development, "catch," and extreme reversible changes in length. (J.L.M.)

209 LoGrande, Michael A. 1983. Introduction. In Buckner, S.C. (ed.), Proceedings of a Management Perspective on the Hard Clam Resource in Great South Bay, p. 1. A seminar sponsored by the Town of Islip (NY 11751), March 10, 1983. The hard clam resource has produced tremendous reductions in harvest during the last few years, and recent outbreaks of shellfish-related disease have compounded the problems. This meeting was convened to discuss the situation and suggest solutions. (J.L.M.)

210 Longwell, A.C. 1976. Review of genetic and related studies on commercial oysters and other pelecypod mollusks. J. Fish. Res. Board Can. 33:1100-1107. Mercenaria mercenaria and M. campechiensis were crossed and the hybrids reared. Haven and Andrews (1957) found that the relative yield of hybrid clams grown in Virginia was superior to that of the original species. Menzel (1968) also reported the superiority of the hybrid in certain environments and questioned the species rank of these two clams. (J.L.M.)

211 Loosanoff, Victor L. 1962. Effects of turbidity on some larval and adult bivalves. Proc. Gulf Caribb. Fish. Inst., 14th Annu. Sess., p. 80-95. Silt is much more harmful to oyster (Crassostrea virginica) eggs than to those of clams (Venus (Mercenaria) mercenaria). The percentage of eggs developing to straight-hinge larvae in different concentrations of turbidity-creating substances were:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>G/L</th>
<th>Oyster</th>
<th>Clam</th>
<th>Kaolin</th>
<th>Clam</th>
<th>Fallers' earth</th>
<th>Clam</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td></td>
<td>95</td>
<td>95</td>
<td>99</td>
<td>82</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>0.250</td>
<td></td>
<td>73</td>
<td>96</td>
<td>100</td>
<td>82</td>
<td>100</td>
<td>61</td>
</tr>
<tr>
<td>0.500</td>
<td></td>
<td>31</td>
<td>99</td>
<td>100</td>
<td>52</td>
<td>100</td>
<td>41</td>
</tr>
<tr>
<td>1.000</td>
<td></td>
<td>3</td>
<td>79</td>
<td>98</td>
<td>37</td>
<td>98</td>
<td>57</td>
</tr>
<tr>
<td>2.000</td>
<td></td>
<td>0</td>
<td>39</td>
<td>79</td>
<td>49</td>
<td>79</td>
<td>50</td>
</tr>
<tr>
<td>3.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>42</td>
<td>26</td>
<td>45</td>
</tr>
</tbody>
</table>

| 4.000 | | 0 | 0 | 76 | 42 | 26 | 45 |

(J.L.M.)

212 Losee, Brian. 1983. Shellfishing in Islip Town: A bayman’s viewpoint. In Buckner, S.C. (ed.), Proc. of a Management Perspective on the Hard Clam Resource in Great South Bay, p. 49-53. A seminar sponsored by the Town of Islip (NY 11751), March 10, 1983. Illegal harvesting of seed clams, overharvesting of legal-size clams, poaching of clams from uncertified waters, and a general disregard for clam conservation laws are genuine threats to the industry. The initial group of baymen who operated from 1960 and before usually took legal-size clams only and returned smaller clams (seed) to the water. As clamming increased through good sets, a new group of clammers came in, and they did not have the same respect for the law. Illegal harvesting became common, and when law officers did summon and arrest violators, their efforts were negated by ridiculously low fines. The Southwest sewer construction further exacerbated the problem, and created a “get it while you can” attitude. Attempts by the Town of Islip Shellfish Commission to manage the industry were negated by poachers. The State had some success in transplanting clams from uncertified areas, and also opening uncertified areas at times when clamming was safe, thus reducing the numbers of clams in uncertified areas and reducing the temptation to poach. But this led some baymen to take clams with dredges, illegally reducing abundance still further. This led many clammers to leave the industry for other jobs. Other environmental mistakes also have played a part: unrestricted residential development, no attempts at human population control, removal of sand bars in Fire Island Inlet, and the negative effects of the Southwest Sewer District. Even the law-abiding clammers eventually were forced to break laws to make a living from the greatly reduced clam stocks. Yet all is not yet lost. The Town must assume a role of leadership, and do the things necessary to manage the resource successfully. (J.L.M.)

214 Lunt, Robert G. 1949.
The clam situation in S.C. Contrib. Bears Bluff Lab. 6, 6 p.
The clam industry in South Carolina is small. Incomplete production figures show a high of slightly over 5,000 bu to a low of 40 bu. In general, production has declined over the years. No culture has been recorded, and management of the fishery has been confined to an occasional closed season. No estimate is available of the quantity of clams (presumably Mercenaria mercenaria) in South Carolina. (J.L.M.)

Most clams harvested in South Carolina are consumed locally, and the harvesting is done by children and farmers. Production of hard clams (Mercenaria mercenaria) from 1929 to 1940 ranged from 47 thousand pounds to 0. Statistics are given for North Carolina, Georgia, and Florida also. About the turn of the century the clam industry was apparently more productive. It is centered in Georgetown County, but clams are plentiful in other places although seldom harvested. The reason is lack of demand. Demand was increased during the middle 1940s because a food shortage caused by the war had stimulated sales, but this demand was not being met by local fishermen. Wholesale dealers still obtain clams from northern markets. (J.L.M.)

Microgrowth increments within the molluscan shell were first described in detail by Barker (1964) in thin-section observations of four genera of bivalve including Mercenaria. Valve-movement rhythmicity is usually most pronounced in intertidal specimens, but subtidal specimens of M. mercenaria exhibit rhythms in relative synchrony with the tidal cycle. Dissolution during anaerobiosis is now believed to be the cause. It has been demonstrated that M. mercenaria becomes anaerobic when the valves are closed. The concentrations of succinate and calcium in extrapallial fluids increase rapidly at first, then more slowly, as the clam is held out of water. The width of the residual matrix provides a record of the length of time that the shell was exposed to metabolic acids, according to Gordon and Carrick (1978). Microscopic growth increments are formed with solar periodicity. These are largely reflections of complex interactions between lunar and solar cycles. Also fortnightly patterns appear, sometimes in pairs, with one fortnightly cluster more pronounced than the other. There are also annual patterns. M. mercenaria grows faster in sandy sediments than in mud, and growth rate and shell structural changes occur when specimens are transplanted to a laboratory tank without substratum. Hard clams within the vicinity of a thermal discharge from a nuclear power plant also showed the effects of raised temperature. Crossed lamellar structure replaced prismanate structure in the outer shell layer of M. mercenaria during high-temperature stress periods. The annual nature of pigmented growth bands within the inner "homogeneous" of hard clam has been observed. (J.L.M.)

217 MacDonald, H.J. 1940.
Venus mercenaria mercenaria was found beneath oysters in sandy mud. Common around edges of oyster beds and occasionally found under areas exposed several hours at low tide. (J.L.M.)

In 1964 the National Shellfish Sanitation Workshop endorsed a set of principles that would govern safe use of a natural resource and encourage water quality programs that will preserve coastal areas for this beneficial use. New York's shellfish industry has continued with a minimum of health related problems since the winter of 1924-25, with the notable exception of an outbreak of infectious hepatitis in Raritan Bay in 1961. The result was permanent closure of all waters in Raritan Bay. In 1982 gastrointestinal illnesses were reported in several places in New York from eating raw clams. Advisories were issued not to eat raw clams and oysters. The economic impact was devastating. The Department of Environmental Conservation responded by proposing legislation to increase harvester and dealers' permit fees, to establish a dedicated fund to receive permit revenues and support Department programs, and a general increase in fines and penalties for violations of laws. The Division of Marine Resources is also considering changes to improve recordkeeping. (J.L.M.)

The escalator harvester is described in considerable detail, but this should be considered as a guide only. Many changes could be made, depending on the specific use. It is, however, extremely versatile, and takes quahogus (Mercenaria mercenaria) and other mollusks with high efficiency. Depths of 10-12 feet appear to be near maximum for best operation. (J.L.M.)

Experimental field manipulations were used to determine the natural survivorship of Mercenaria mercenaria during the first 3 years of life in a small protected inland estuary (Pocuomon River, Groton, CT) and an exposed outer harbor (West Harbor, Fishers Island, NY). Clams were planted and recovered at monthly and full-season intervals from May 1982 to Nov. 1982. Three densities (25, 150, and 300 clams/25 m²) and six sizes (1.5, 10, 15, 18, and 21 mm) were tested. More than 90% of mortality at both sites was the result of crustacean predators. Green crabs (Carcinus maenas) were the dominant predators of clams up to 10 mm, while lobsters (Homarus americanus) readily consumed 15-21 mm clams. Full season survival of all size classes was consistently higher in the estuary than at the outer harbor site. The dramatic difference between survival of 3-year-old clams was attributed to the absence of lobsters in the Pocuomon River. Survival was strongly density-dependent, particularly in West Harbor, where the mean monthly survival of 5- and 10-mm clams planted at the lowest density was more than four times higher than survival of clams planted at the highest density. (Modified authors' abstract - J.L.M.)

221 Malouf, Robert E. 1981.
Despite active research programs, little commercial use of heated effluents has been made for culturing bivalve mollusks. Some problems associated with nursery culture in heated effluents include: contamination from radionuclides discharged from nuclear power plants; contamination from heavy metals; toxicity problems from chlorine used to control fouling in power plants; temperature shock resulting from shutdowns; and lack of temperature control. Other problems, more closely related to the biology of the animals than to operation of the plant, include fouling and disease, and inability to provide supplemental food to offset increased energy demands. This last is the most important barrier to realizing the advantages of heated culture. High temperatures should be avoided when possible when food is scarce. This requires that the system include some type of temperature control or that animals be removed from the heated effluent when necessary. Mercenaria mercenaria is not mentioned, but the general principles apply. (Modified author's abstract - J.L.M.)

222 Malouf, Robert. 1983.
Mariculture must be defined before it can be intelligently discussed. Intensive culture may involve complete control of every aspect of the life cycle. It is highly productive, but expensive and technically sophisticated. Extensive culture may involve only minimal control over the organism. It is less productive per unit area, but also less expensive and tends to be less technologically demanding. There is also a distinction between private and public mariculture. The methodology may be identical, but private mariculture produces a crop on ground that is privately controlled, whereas public mariculture supplements natural reproduction and increases the public harvest. Either method may be costly, and it is necessary to ask whether the costs can be justified. Mariculture has certain advantages over other options, like restrictions on harvest, because they are unpopular and hard to enforce. But high-percent survival must be obtained from seed planting, if cost is to be justified, and this requires consideration of predators and site selection. The problem of scale is also important, and present attempts are simply too small to have significant effects. Mariculture is
only a part of the total effort that must be exerted, and it must be combined with enhanced enforcement, selected closures, stock assessment, and efforts to enhance natural reproduction by spawning relays and spawning sanctuaries. Solving the shellfish industry's problems cannot come without cost, and present expenditures are very small in comparison with the value of the industry. (J.L.M.)

The proposals for clam aquaculture in the U.S. is encouraging. Commercial quantities of hatchery-reared seed are available from a number of private hatcheries. Pilot projects indicate the feasibility of nursery and field growout methods developed over recent years, and new materials make these methods more cost-efficient. Diseases and parasites, although not studied extensively, are under control in hatchery and nursery culture and have not been a common problem in field growout systems. The hard clam (Mercenaria mercenaria) seems particularly appropriate for aquaculture. They are in high demand, are highly valued, consumer demand and acceptance are high, extensive transportation and marketing networks exist, and the biology is well known. The chapter includes sections on basic biology, culture techniques, parasites and diseases, constraints, and status and economic overview. The entire chapter should be read. (J.L.M.)

Although the hard clam, Mercenaria mercenaria, makes up only about 15% of the national total annual clam landings, it accounts for nearly 50% of total value. Historically, the major hard clam fisheries have been to the north, but these traditional fishing grounds have not had sufficient production to meet the growing demand for this species. This has stimulated interest in the southeast. In South Carolina this has stimulated considerable growth over the last 10 years, and in addition has started a commercial hard clam mariculture facility. The life history of the hard clam, the fishery and mariculture, the market, and local constraints to development are described. Future development of the industry depends upon events in the Santee delta, where redriver and the Santee River will decrease landings in that area. Increased harvests in other parts of the State, and increased aquaculture activities will compensate. Depuration also will increase production. (J.L.M.)

Clam farming is feasible if people start small, make sure they have the legal right to use the site, be certain that they have the permits and licenses necessary, have notified state and federal agencies about the activity, construct culture units with predator control and maintenance as primary considerations, and are prepared to dedicate sufficient time for regular and complete inspection of the site. The outlook is promising but is still a "high-risk" venture. (J.L.M.)

Adult hard clams were sampled monthly between Dec. 1977 and Feb. 1979 and semimonthly from March to June 1981, from subtidal populations in North Santee Bay, South Carolina. Gonad development was monitored using standard histological methods and resulting slides were examined with light microscopy at 100 and 400X. Observed gametogenic progression was best categorized by five states or phases of development: inactive, ripe, spawning, partially spent, and spent. Males and females displayed a complex progression of gametogenesis. Gonadal tissue was not uniformly dominated by clearly defined, distinct stages. Instead, gonads routinely exhibited several stages simultaneously and progressed through slow shifts in domination of stages in gonad tissue. Spawning in the population occurred continuously for 6 months (May to October) with at least two apparent peaks of spawning activity in summer. (Modified authors' abstract - J.L.M.)

Abstracted elsewhere in this bibliography. (J.L.M.)

The State of South Carolina has established a demonstration-scale hard clam (Mercenaria mercenaria) culture project. The project operates on a two-stage growout protocol. Raceways provide initial growout (to 10 mm). Final growout is done in field units with protection from predators and substrate for support and orientation. Over 2.7 million imported seed are being planted in South Carolina estuaries over a 13-month period. Field units are stocked at three densities, 2150, 4300, and 6450/m2, using intertidal and floating (raft) formats and a variety of substrates. Units are sampled monthly to determine growth and survival and coincidental monitoring of various environmental data. Small field units have shown that densities as high as 2156 seed clams/m2 do not show density-limited growth, at least to a mean population size of 39 mm, but smaller seed at lower densities sometimes have shown density-limited growth. Thus, this needs to be repeated on a larger scale. Economic analysis is also necessary. The State also has a legislative committee to study existing shellfish lease policies and make recommendations for modifications. (J.L.M.)

Seed clam, Mercenaria mercenaria, culture in an experimental-scale upflow nursery system. Aquaculture 54:301-311.
The study was conducted to evaluate growth of seed clams in an upflow nursery culture system in South Carolina relying on natural productivity as the only food source. Experimental-scale passive upflow cylinders were stocked with small seed clams (initial mean size ~4 mm) at various densities (2.3, 5.0, 10.0, 20.0, 30.0, and 40.0 kg/m3) in trials begun quarterly. Cultures received a continuous uniform water flow rate of 2.5 L/minute from an adjacent estuary, at ambient phytoplankton concentration, temperature, and salinity. Most rapid growth was obtained with seed stocked in April and October, when water temperatures were between 18 and 22°C. Monthly biomass increases as high as 267 g/100 g were achieved. Growth was positively correlated with flow rate in all seasons except winter. A flow-biomass ratio of 15:1 resulted in a doubling of biomass in 30 days, while a ratio of 30:1 resulted in a tripling over the same period. Under favorable environmental conditions, a biomass doubling could be achieved at stocking densities as high as 20 kg/m3. Maximum production over a 3-month period was 495 g (309 g/100 g) of 7-mm seed, corresponding to 62 kg/m3. Although water requirements were similar to those previously reported for raceway culture in South Carolina, results indicated much greater biomass carrying-capacities per unit area with upflow culture systems. (Modified authors' abstract - J.L.M.)

Commercial-scale, upflow nursery culture of the northern hard clam Mercenaria mercenaria (Linne) in South Carolina. J. Shellfish Res. 3(4):94 (abstract).
The nursery consists of 60 forced upflow silos used for initial growth of imported 1-mm seed, and 120 passive upflow silos used for seed growth from ~3 mm to field planting size (~8 mm). At full operation the nursery requires a minimum total flow rate of ~5000 L/minute, has a holding capacity of 24 x 106 seed, and an optimum annual production capacity of 18-36 x 106 planting-size seed. Data generated from experimental-scale upflow systems operating in coincidence with a commercial nursery compared favorably with raceway data based on water use per unit biomass supported and biomass support capacities per unit area. (Modified authors' abstract - J.L.M.)

The model assumed that the volume of a hard clam is proportional to the cube of a linear dimension. Iterations allowed model refinements which produced positive correlations between predicted and observed data. Collected data were summarized on size/volume relationships in seed clams and a model was presented, based on truncated spheres, which attempts to relate size and volume characteristics in seed clams within the size range 1-15 mm. (Modified authors' abstract - J.L.M.)

Uplift nursery systems for culture of bivalve mollusk seed are attractive alternatives to traditional raceway systems. The potential benefits include maximizing space utilization, low construction cost, ease of maintenance, and operational longevity. A commercial nursery facility for raising Mercenaria mercenaria in South Carolina employs forced and passive upflow culture instead of traditional raceway systems. Biomass increases as high as 1400% per month were achieved in forced-flow systems at stocking densities of 0.3-0.5 g cm⁻² and flow rates of 80-120 L/min/ft². In passive-flow systems, biomass increases of as high as 800% per month were achieved at stocking densities of 0.2-0.6 g cm⁻² and flow rates of 23-117 L/min/ft². Results were compared with those from raceways and from an experimental-scale, passive upflow system. (Modified, authors' abstract) (J.L.M.)

Neither Mercenaria mercenaria nor any other mollusk is mentioned. Mollusks were collected on the shore of the Japan Sea. Isotrops of the proteins had identical molecular masses, mass-charge ratios, and isoelectric points. (J.L.M.)

Six different algae: Isochrysis galbana, Monochrysis lutheri, Phaeodactylum tri- cornatum, Nannochloris oculata, Dunaliella tertiolecta, and Cryptomonas sp. were fed to Mercenaria mercenaria larvae. M. lutheri produced the fastest growth rate. The second highest growth rate was produced by P. tricornutum, I. galbana, and Cryptomonas sp., followed by N. oculata. D. tertiolecta was unable to sustain growth to metamorphosis of hard clams. Weight specific respiration was determined by a modified Gibson respirometry technique and showed b = 0.842 and k = -0.310. The b value was thought to be a result of structural tissue development; the k value was found to vary with the larval brood. Extracellular metabolites of the algal species affect larval respiration. Mean overall effect of P. tricornutum and M. lutheri metabolites appeared to be negligible. I. galbana, D. tertiolecta, and Cryptomonas sp. metabolized an overall stimulation of larval respiration. N. oculata metabolite inhibited respiration. Metabolites also affected clearing of inert starch particles by clam larvae. Only the response of clearing to D. tertiolecta metabolite was concentration dependent. Results of clearance experiments showed that I. galbana and M. lutheri stimulated clearing by larvae. D. tertiolecta inhibited clearing. Comparison of growth rate, respiration, and clearance results showed that the external metabolites of I. galbana, M. lutheri, and D. tertiolecta may influence the food value of these algae to Mercenaria mercenaria larvae. (Modified, author's summary) (J.L.M.)

Mercenaria mercenaria is mentioned with reference to positive correlation between phytoplankton concentration and growth in a paper by Pratt and Campbell (1956) abstracted elsewhere in this bibliography. (J.L.M.)

The hypothesis tested was that benthic recruitment is more successful in low densities of infusional suspension feeders than in high densities. Densities of young hard clams Mercenaria mercenaria ranging from 82.5-330/m² were placed in deaerated boxes of sand. Mean number of species, mean number of individuals, mean wet weight biomass, mean species richness, and mean dominance index per sample were calculated per density of hard clams from May to October. The experiment did not support the hypothesis. It was concluded that feeding behavior of dense populations of M. mercenaria did not preclude successful recruitment of other benthic species. (J.L.M.)

Harvesting of hard clams (Mercenaria mercenaria) replaced oystering as the major shellfishery in the "Shoal Harbor" area (Raritan and Sandy Hook bays) about the turn of the century. Specific clam beds were often "condemned" in response to hepatitis and typhoid fever epidemics. In 1961-63 all were condemned, and this provided some resilience to the system because they continue to thrive and provide valuable sources of juvenile clams, which can be transplanted to unpolluted beds elsewhere. The law sharply constrained the flexibility of local fishermen, and they responded to it by breaking the law whenever possible. They also were successful in gaining exemption from the State's relay program, so that they could not be transplanted elsewhere. The baymen's association has recently agreed to allow relay of clams to southern bays, but only if a depuration plant is provided to them. Depuration introduces technical and biological problems and has been resisted by the State. (J.L.M.)

Clamming is one of the lynxheps of the baymen system. Hard clams (Mercenaria mercenaria) are easily available and abundant in the bays, and can be taken legally all year-round. "Shoal Harbor" baymen still consider themselves "clammers" despite the fact that pollution has resulted in "condemnation" of the shellfish beds of Raritan Bay since 1962. Piracy is their remaining alternative, and has become a custom in Shoal Harbor. This has been partly caused by conflicts between common-property clammers and the oyster corporations. Baymen in the area have been able to keep the State from engaging in a program of transplanting clams from the polluted waters of Raritan and Sandy Hook bays to purer waters elsewhere in New Jersey. This led in 1981 to a decision to license a pilot plant for depuration of clams, stimulated by this attitude on the part of baymen and by the costs to the State of trying to cope with piracy. (J.L.M.)

The very important shellfish resources of the State's bays and estuaries, including hard clams (Mercenaria mercenaria), stay inshore all the time. Almost every man living near the water catches a few fish and gathers clams for his own table. The more important settlements where clamming is carried on extensively are Fair Haven, on the Shrewsbury River, and Manasquan on the Squan River. The clammers whom Ingersoll praised were men of private property "the stout-armed native oystermen and farmers who live adjacent to the water and make hard-clamming a regular summer occupation" (Ingersoll 1887:597). (J.L.M.)

Of 115 digestive tracts of Opsanus tau examined from Delaware Bay in 1952, 1953, and 1955, Mercenaria mercenaria was found only in one. Crustacea were the major food. (J.L.M.)

Panopeus herbstii, which consumes primarily oysters, hard clams, mussels, and barnacles, is prevented by its larger size from entering most of the narrow spaces between living oysters while the narrow spaces are the primary refuge for Eurypanopeus depressus, which has a less restricted, more omnivorous diet. P. herbstii is larger, faster growing, longer lived, and more fecund, while E. depressus matures earlier, produces more broods per lifetime, and has a shorter generation time. (M.W.S. and J.L.M.)

The hard clam, Mercenaria mercenaria, has long been the leading marine resource in New York State. In the 1960s it produced over 50% of the value of New York landings of all seafoods, and continued to produce at least 50% or more until 1978. In 1947 landings reached a peak of over 10 million pounds of clams, and in 1976 produced a secondary peak of over 9 million pounds. In 1982, however, landings had dropped to less than 4 million pounds of clams. The cause almost certainly was overfishing. Even more ominous have been serious outbreaks of human disease, not definitely traced to Great South Bay, which caused demand and prices to drop substantially. Poisoning in closed areas and poaching of undersized clams in open areas have

Some enrichment from nutrients and other bioactive materials resulting from domestic and industrial wastes may enhance biological productivity, but further enrichment may begin to alter certain food webs, as was the case in Moriches Bay, Long Island, NY, where nutrients from duck farm wastes altered the food stock of the hard clam, Mercenaria mercenaria, by replacing diatoms with less suitable food organisms. This caused deterioration of the fishery. Diatoms form the basis for some food webs that are commercially important to man, such as the hard clam. (J.L.M.)

At monthly intervals between Feb. 1975 and Oct. 1976, hard clams were collected from two hatcheries on Great South Bay, NY. A large unidentified ciliated protist was observed within the water tubules of the gills in 4 out of 190 adult clams. A probable sporozoan parasite resembling a gregarine spore stage was found in four. Types of intracytoplasmic inclusion bodies were observed in several hard adult clams. Ricettusia-like organisms and a chlamydia-like agent were observed. Single and multiple small papillomatous growths were found on the mantle surfaces of two clams. In juvenile clams two types of intracytoplasmic inclusion bodies reported in adults were observed. Hard clams had a lower diversity of parasitids and histologic abnormalities, none of which provoked any host response or had any pathological significance. No parasites were found with known significance to public health. (J.L.M.)

Hard clams, Mercenaria mercenaria, can deplete human polio virus type I within 96 hours if placed in clean seawater at 13-15°C. If certification procedures are exercised for shellfish pathogens, some additional effort made in screening mollusk tissues for incidental viral fish pathogens would provide significant protection against introduction of these agents by movement of shellfish stocks. Shellfish may be seasonal reservoirs for some endemic fish pathogens originating from fish-eating zooplankton or from subclinically diseased “carrier fish.” Shellfish could introduce exotic fish diseases when transported to other waters for commercial or experimental purposes from areas where such agents may be endemic. (J.L.M.)

M. campechianus was examined for uptake and tissue distribution, of Zn and Mn accumulated from seawater containing varied concentrations of inorganic phosphate, total zinc and manganese. Highest 10-day tissue concentrations for both metals were found in the kidney with results showing different uptake patterns for zinc and manganese. Total metal and inorganic phosphate concentrations showed marginal effects on manganese distribution but produced significant variation in zinc distribution between kidneys and gills. (J.L.M.)

Mercenaria mercenaria was not included. Species which possessed eu-latero-frontal cirri, as the hard clam does, completely retain particles above 4 um. Particles down to 1 um in most cases were efficiently retained. (J.L.M.)

248 Moore, Carol A. 1981.

Hemocytes of the hard clam were observed to phagocytize Isochrysis galbana and several other species of unicellular algae and cteno red-stained yeast. “Blunt” cytoplasmic granules received degraded materials from the phagosomes containing the algae but not those containing a yeast cell. Blunt granules were further observed to participate in intracellular processing of the hemocyte of vital dyes and endotoxin. It is suggested that blunt granules represent a mechanism whereby hemocytes can contain or further degrade foreign material. (J.L.M.)

249 Moore, Carol A. 1972.

Amoebocytes of the hard clam were of three types: a small granulocyte, a large granulocyte, and a lymphocyte-like cell. The similarity of the nucleus in all three cell types might suggest that these cells represent different stages of maturity. This was also suggested by the gradation of cytochemical reactions. Blunt granules were identified as mitochondria. They also exhibited unidentified material which was PAS-positive-diastase resistant and metachromatic. Dot-like granules were identified as lysosome. These probably serve as centers of digestion for phagocytized materials. Refractile granules were demonstrated to be membrane bound, lipid-filled structures. These may act as storage centers. (J.L.M.)

Preliminary results show that cadmium is associated with large extracellular granules in the lumina of the kidneys. The presence of radioactive cadmium was determined morphometrically by counting developed silver grains on sections coated with a photographic emulsion. The results were highly significant to show that more radioactive cadmium was associated with large granules than with the background tissue. (J.L.M.)

Seasonal sediment sampling at 82 stations (1-mile spacing) throughout Raritan Estuary was analyzed for macrobenthos, size-grade, metals and HC (22 stations). Distinct allopatric communities of clams Tellins apila and Mercenaria mercenaria showed seasonal spatial distribution. Mercenaria density was lower than in earlier studies. No major change in quality of the environment was indicated for the last 6 yrs. (from authors’ abstract). (J.L.M.)

Reference is made to Mercenaria mercenaria studied by other authors abstracted elsewhere in this bibliography. (J.L.M.)

253 Murphy, Richard C. 1985.

Factors affecting the distribution of the introduced bivalve, Mercenaria mercenaria, in a California lagoon - The importance of bioturbation. J. Mar. Res. 43(5):673-692.

In Colorado Lagoon the mean total bivalve density was 143/m2. Of this the density of Mercenaria mercenaria was 78/m2. In the Marine Stadium mean total clam density was 57/m2 and M. mercenaria was absent. Bivalve populations were dominated by suspension-feeders in the Lagoon. In the Stadium deposit-feeders were most abundant. Burrows of ghost shrimp, Callianassa californiensis appeared to be more abundant in the Stadium than in the Lagoon. There was a strong negative correlation between growth and survival of M. mercenaria and suspended particulate matter. Callianassa can create levels of turbidity and sediment destabilization sufficient to reduce the growth and survival of M. mercenaria. Absence of C. californiensis from the Lagoon came from stressful conditions such as elevated summer temperatures, low winter salinity,
periods of anoxia, and possibly pollutants. Hardiness of *M. mercenaria* and its need for elevated temperatures for spawning probably contribute to its success in the Lagoon. (Modified author's abstract - J.L.M.)

This brings up-to-date the report: *Guidelines for the management of Long Island hard clam resources*, published in 1974. The hard clam industry is presently in a state of crisis brought about by a precipitous decline in landings and a lack of consumer confidence caused by a series of disease outbreaks linked to ingestion of raw shellfish taken from polluted waters in New York and other states. The history of the industry is reviewed, public health issues discussed, and recommendations made for future research. (J.L.M.)

The hard clam, *Mercenaria mercenaria*, species plan is covered in Appendix D, pages 168-196. A critical review and in-depth summary of the literature should be completed. A series of pilot-growout demonstrations, and hatchery and nursery demonstrations, should be established. Feeding and nutritional studies should receive high priority. Development of a prepared food or diet should be started. Existing hatcheries should be funded to increase production. To develop better seed-production methods, to furnish seed for experimentation, and to encourage aquacultural development, two regional research hatcheries should be constructed. Training courses and demonstrations should be established for commercial culturists and marine-extension personnel involved in clam aquaculture. Annual or biennial workshops should be held to review recent developments. Several other lesser recommendations are made. (J.L.M.)

256 Nelson, Julius. 1892.

Cause of the viridity of New Jersey clams. Tuckerton (NJ) Beacon, 3 November 1892.

The green color in clams (*Venus mercenaria*) was caused by a microscopic plant which the dryness of last summer caused to multiply. Clams are at it in large quantities. There was no disease or parasite present, and no copper. The color was confined mostly to the gills, but in some clams in the liver also. Fatness and flavor were excellent. There was no harm to people and no need for alarm. (From Baughman’s bibliography - J.L.M.)

257 Nelson, Thurlow C. 1941.

The sperm of *Venus mercenaria* has no effect on the pumping of the oyster. (J.L.M.)

258 New Jersey State Department of Environmental Protection. 1981.

Approved area charts 4 and 5. Bur. Shellfish. Control, CN-029, Trenton, NJ 08625. Shows areas approved and dates, from Island Beach to Long Beach. (J.L.M.)

259 Newkirk, Gary F. 1980.

We are at present far from having control over genetics and other aspects of biology of mollusks. Significant advances have been made recently toward understanding many aspects of genetics; however, and these are briefly reviewed in this paper. Included is some mention of genetics of hard clams (*Mercenaria mercenaria*). Chanley’s work on the notata shell marks in hard clams, Menzel’s hybridization experiments, and Chanley’s study of selection for growth rate are mentioned. Most of the paper, however, is concerned with oysters. (J.L.M.)

Applied breeding of commercially important mollusks: A summary of discussion. Aquaculture 33:415-422.

There are exciting possibilities for new approaches to the genetic improvement of mollusks for commercial culture. What is needed now is a refinement of techniques and a clear demonstration of gains that can be made, not general statements. The time is ripe to incorporate genetic improvement programs in development of this industry. No specific mention of *Mercenaria mercenaria* but the paper applies to all commercial mollusks. (J.L.M.)

Deleterious effects of turbidity on eggs of the hard clam, *Mercenaria (=Venus mercenaria*), were documented by Davis (1960) and Loosanoff (1961). (J.L.M.)

Describes the Long Island Green Seal program, a new voluntary tagging procedure, which attempts to assure quality of clams (*Mercenaria mercenaria*) by placing a tamper-proof Green Seal on bushel bags of clams so that the origin can be traced if desired. (J.L.M.)

Bioconcentration factors (BCFs) for hard clams (*Mercenaria mercenaria*) were 109 for cadmium. (J.L.M.)

Polychlorinated biphenyls (PCBs) in the flesh of hard clams (*Mercenaria mercenaria*) from the Hudson River and New York Bight region were no greater than 0.2 µg/g wet weight. (J.L.M.)

Burrowing behavior of juvenile hard clams in oil-contaminated sediment was examined in a series of laboratory experiments. At oil concentrations within the range that might occur after an oil spill, depth and rate of burrowing were altered. The depth to which clams in oiled sediment burrowed after 96 hours was significantly shallower than the depth in controls, while the time taken to burrow beneath the surface was longer in oil-contaminated sediment. Alterations in burrowing were indicative of avoidance behavior rather than oil-induced debilitation. Results suggest that such alterations may increase vulnerability of this species to predation. (Modified authors’ abstract - J.L.M.)

266 Osorio, Cecilia, Daniel Frassinetti, and Eduardo Bustos. 1983.

Results suggest that the valid name is *Venus antiqua antiqua*. Increasing harvests of clams in Chile caused state institutions to carry out biological and fishery studies of one of the most important species. *Mercenaria mercenaria* is not mentioned. (J.L.M. and M.W.S.)

Two species of hard clam are harvested in Florida, the northern hard clam, *Mercenaria mercenaria*, and the southern hard clam, *M. campechiensis*. *M. campechiensis* is more dominant in commercial harvests from the west coast. A subspecies, *M. mercenaria texana*, occurs along the northern coast of the Gulf of Mexico and extends westward beyond Apalachicola Bay. Marketability has been hampered by limited survival when placed in common refrigeration. *M. mercenaria* survived better in refrigeration than *M. campechiensis*, as did the hybrid. Clams from two places were tested. Those from Indian River survived better than those from St. Joe Bay in refrigerated storage at 40o F. Indian River is on the east coast of Florida near Cape Canaveral, St. Joseph
Bay is on the west coast near Panama City. Most clams from Indian River were *Mercenaria mercedaria* whereas those from St. Joseph Bay were mostly *M. campechiensis* with some *M. texana*. There was no discernible pattern in mortality in relation to clam size. Clams taken from warmer waters, e.g., in summer rather than in winter, had shorter storage life. (J.L.M.)

268 Pannella, Giorgio. 1980.

Infrared spectra obtained from powdered sagitta of *Mercenaria bilinearis* (silk bakers) and homogeneous shell layer of *Mercenaria mercenaria* are virtually identical, as shown by a graph. (J.L.M.)

A general review of the book, without reference to species. (J.L.M.)

270 Patterson, Captain R.A. 1986.

Grant NA85AA-D-SC059.

Present regulations and enforcement problems are described. (J.L.M.)

No specific mention of *Mercenaria mercenaria*, which does not occur that far south. (J.L.M. and M.W.S.)

Subcellular distribution of aminotransferases, and pyruvate branch point enzymes in gill tissue from four bivalves. Comp. Biochem. Physiol. 82B(1):129-132.

Aspartate aminotransferase (AAT), alanine aminotransferase (ALAT), malic enzyme (ME), malate dehydrogenase (MDH), pyruvate kinase (PK), and phosphopholypunol pyruvate carboxylase (PEPCK) activities in cytosolic and mitochondrial fractions of gill tissue from ribbon mussel, sea mussel, oyster, and *Mercenaria mercenaria* were determined. AAT showed distinct mitochondrial and cytosolic isozymes in gills of all animals. ALAT showed the same in gills of oysters, sea mussels, and clams, but only mitochondrial ALAT was found in ribbed mussel gill tissue. PK and PEPCK were cytosolic in all. ME was found only in the mitochondrial fraction of ribbed mussel and quahog gill tissue whereas sea mussel gills showed distinct cytosolic and mitochondrial ME isozymes. MDH showed distinct cytosolic and mitochondrial isozymes in all gills. (Modified authors' abstract - J.L.M.)

Density of clams (*Mercenaria mercenaria*) was positively associated with seagrass cover in a meadow of *Halodule wrightii*. Seagrass provides these clams with a refuge from whelks (*Busycon* spp.). In the unaltered (control) seagrass meadow clam density remained constant over 13 months. Where seagrass was experimentally removed, marked individuals showed higher rates of mortality in two successive experiments spanning 13 months. Whelk predation fell preferentially on larger size classes, while factors which contribute to clam disappearance usually acted more intensely on smaller sizes. Experimental exclusion of large predators by caging demonstrated that even in unvegetated area survivorship of clams was high in the absence of whelks and other predators. (Amended author's abstract - J.L.M.)

274 Peterson, Charles H. 1983.

Quantitative reproductive senility occurs when older age classes achieve less reproductive effort than expected from the allometric (power) curve relating body size to reproductive effort among younger adults. Among *Mercenaria mercenaria* from North Carolina up to age 19, there is no evidence of either absolute or quantitative reproductive senility. (Modified author's abstract - J.L.M.)

Among 67 hard clams collected during spawning from Core Sound, NC, gonadal masses increased significantly with body size. Clam age did not explain a significant amount of the residual variance in linear regression of log gonadal mass on log shell length. Because this collection contained 11 individuals over 24 yrs of age, including the oldest *Mercenaria mercenaria* ever reported, at 41 and 46 yrs, these results imply that gamete production in hard clams continues into old age at a quantitative level predicted simply by the power curve relating gonadal mass to body size. There was no evidence of even partial reproductive senility in gamete production at old age. (Modified author's abstract - J.L.M. and M.W.S.)

The hypothesis that passive hydrodynamic influence of projecting sea grasses on larval and postlarval settlement is sufficient to explain higher *Mercenaria mercenaria* densities inside a seagrass habitat was tested. This was done by comparing the between-habitat ratio of 0-year-class recruits after each of two settlement seasons with the between-habitat ratio of densities of all older age classes. Differential survival after settlement must be invoked to explain at least half the seagrass enhancement in *Mercenaria population density. (J.L.M.)

Thirteen monthly measurements of individually marked juvenile and adult specimens of *Mercenaria mercenaria* from field plots in North Carolina demonstrated similar seasonal patterns in size-adjusted monthly growth rates in shell volume. A large absolute maximum occurred in spring (April or May) and smaller relative maxima in midsummer and late autumn. The ratio of juvenile to adult size-adjusted growth rates in shell volume was nearly constant for 10 months but then increased eightfold in December and January. This growth anomaly between size classes could not be explained by examining dry weights of soma and gonads from additional marked juvenile and adult clams that were sacrificed monthly. Juveniles differed from adults by possessing negligible gonadal mass on all dates. However, knowledge of monthly changes in adult gonadal mass did not explain a significant amount of the residual variation in the regression of monthly juvenile volumetric growth on monthly adult volumetric growth. Seasonal changes in growth of adult gonadal mass and quarterly examination of gonadal histology suggested a winter period of negligible gametogenesis followed by a spring burst of intense reproductive activity. The best explanations for the anomalously high volumetric growth of juveniles relative to adults in December and January are: 1) winter availability of a food source accessible only to juveniles; or 2) biological storage of energy during winter by adults in preparation for the process of rapid gametogenesis in spring. If the second explanation is correct, adult clams exhibit a large seasonal change in allocation of resources between somatic growth and reproduction, with maximal allocation to reproduction in winter before gonad histology and growth of gonadal mass indicate reproductive effort. (Modified authors' abstract - J.L.M.)

Mercenaria mercenaria is not mentioned. Siphon nipping by Lepocucos armatus, *Hypopsepsa gutulata*, and *Paralichthys californicus* reduced growth of *Protocassa staminea* in nature as compared with the same bivalve in cages that excluded large predators and crappers. (J.L.M.)

Average density of *Mercenaria mercenaria* in samples taken from an elgrass (*Zostera marina*) bed in Back Sound, NC was 9/m², more than five times average density (1.6/m²) in samples from a nearby sand flat. Size-frequency distributions differed between environments, the sandflat contained a larger fraction of *Mercenaria* in the smallest group (0-1 cm). Age-frequency distributions also differed between environments but average *Mercenaria* age was identical. Average sizes of 0-, 1-, and 2-year-class *Mercenaria* were significantly greater in the seagrass collection. There
was also an implication of higher growth rates inside the seagrass environment. Seagrass baffles currents near the bottom, where Mercenaria feeds, to levels 50% lower than those measured simultaneously on the sandflat. The paradoxically higher growth rate of Mercenaria in the lower current regime inside the seagrass bed may be a consequence of higher particulate food concentrations produced by the hydrodynamic baffling of the emergent vegetation. (J.L.M.)

Habitat strongly influences the relative effectiveness of these clam rakes. In unvegetated sandy sediments the pea digger took significantly more legal-sized hard clams Mercenaria mercenaria per unit time than the bull rake. In a seagrass bed the relative effectiveness was reversed. The difference between rake effectiveness was not a consequence of greatly differing efficiencies of clam capture within raked areas, but rather of differing rates of urchin coverage. Any habitat-specific regulation of a fishery requires more intense enforcement to be effective than an outright prohibition of certain gear. But the deeper water and unvegetated mudbottom usages of bull rakes suggest that this gear deserves a place among legal claming gear, despite its threat to seagrass. (J.L.M.)

Band data from marked Mercenaria mercenaria after 24 months provided a compelling case for using major growth bands to age hard clams in the Cape Lookout region. Growth bands were recognized in sectioned shells. Of 89 individuals 17 showed insufficient growth or lacked a disturbance check to mark the precise size at the beginning of the experiment. Of the remaining 72, all but 2 deposited exactly 2 additional dark growth bands. Ages ranged from 0 to 17 years at the beginning of the experiment. (J.L.M.)

Individually marked and measured Mercenaria mercenaria were placed in field enclosures of three types near Cape Lookout, NC, in June 1978. Subsets were collected and sacrificed in Oct. 1979, May 1980, Oct. 1980, and Oct. 1981. Growth bands were deposited annually during the summer-fall season. Enclosure type did not alter the regular band pattern. Only about 7% of the recruits in spring samples failed to show an identifiable growth band from their first summer-fall period. Thus, southeastern M. mercenaria near Cape Lookout can be aged by counting internal growth bands, but, unlike northern populations, show slow growth and annual band deposition during summer-fall rather than in winter. Aging of a Core Sound collection gave a high proportion of older clams (up to 32 years old) and a mean age of over 9 years. Growth rates gave an average legally harvestable size reached in 1½ years. A lower recruitment success was shown from the 1977, 1978, and 1979 year classes than for previous years. This corresponds with a fourfold increase in commercial harvest, and suggests that the spatwan recruitment relationship should be examined. (Modified authors’ abstract - J.L.M.)

Burrowing rates of small clams (not Mercenaria mercenaria) were significantly faster than those of larger clams. Above a threshold of 5.8 µg Cu/g added to dry sediment, the time for 50% of the clams (Protothaca staminea) to burrow (ET₉) increased logarithmically with increasing sediment copper concentration. Previously exposed clams had a lower threshold to Cu and a longer reburrowing time. Clams exposed to sediment mixed with Chelex-100-sorbed Cu showed no significant change in burrowing time. Bioassays based on clam burrowing behavior can measure bioeffectiveness of sediment-sorbed metals and a subtleth effect with ecological meaning. (J.L.M.)

Gravel sediment freshly enriched with over 4.4 µg Cu/g significantly increased the burrowing and reburrowing times of littleneck marine clams (Protothaca staminea). Mercenaria mercenaria is not mentioned. (J.L.M.)

No specific mention of Mercenaria mercenaria. The general morphology of the mussel kidney is outlined. The excretion of nitrogenous waste by aquatic molluscs is described. (J.L.M. and M.W.S.)

FMRFamide has positive inotropic and chronotropic actions on the isolated heart of Mercenaria mercenaria. In addition, it causes a sustained contraction of the radula protractor muscle of Busycotypus contrarium. The action of 5-hydroxytryptamine (5-HT) is similar to that of FMRFamide on Mercenaria heart, and the 2-dose-response curves are parallel, but 5-HT cardioexcitation is blocked by methysergide; that of FMRFamide is not. Acetylcholine (ACh) also contracts the radula protractor; but the effect is qualitatively different from that of FMRFamide and the dose-response curves are not parallel. Benzquinonium blocks ACh contractions, but not those of FMRFamide. A number of amino acid derivatives and peptides were screened for biological activity on these two muscles, but most were inactive. (Modified authors’ abstract - J.L.M.)

Accumulation and retention of cesium-137, cerium-144, zinc-65, and gold-199 and the effects of radiation were followed on hard clams, Mercenaria mercenaria, oysters, Crassostrea virginica, and bay scallops, Aquiduestris irradians. LLD₉₀ for clams in the various dose groups was: 186.656 roentgens (r), 5.5 days; 163.324 r, 4.5 days; 139.992 r, 6.5 days; 116.600 r, 25.5 days; 93.328 r, 38.5 days. The remaining groups of irradiated clams (46,664, 23,332, 11,666, and 5,833 r) had not attained a 50% mortality after 60 days. (J.L.M.)

Abstracted elsewhere in this bibliography under College Marine Stud., Univ. Delaware, Newark, DE 19716, NOAA Sea Grant 04-3-158-30, 13 p. (J.L.M.)

The information was presented at the 6th Annual Meeting of the World Mariculture Society, Seattle, WA, in January 1975. Three principal controlled-environment system configurations have been designed and utilized. Each has served a specific purpose. The technical feasibility of raising bivalve molluscs, including Mercenaria mercenaria, from egg to market size in a recirculating system with a diet of cultured algae has been demonstrated. Currently, system optimization and cost reduction efforts are working toward achievement of an economically feasible system. System 1 was discontinued because algal cells could not be harvested efficiently from the media and because it had a limited capacity to produce massive quantities of algae. System II worked well but it was too small for scale-up to commercial operation. System III demonstrated the success of growing bivalve molluscs on cultured algal cells, productivity of algal cultures was increased, and the recycle potential to make the alga-mollusc route a reasonable one was demonstrated. A 50-hatchery system including a solar-powered mass culture facility is currently under design. (J.L.M.)

System configuration and performance: Bivalve mollusc mariculture. In Avault,
Engineering aspects of bivalve molluscan mariculture - Progress at Delaware 1975.

The University of Delaware Project is working toward development of commercial,
closed-cycle, controlled-environment shellfish mariculture suitable for rapid growth
of Mercenaria mercenaria and other bivalves. The paper reviews improvements in
growth rate of oysters. (J.L.M.)

Total hydrocarbons, polycyclic aromatic hydrocarbons and synthetic organic
compounds in the hard shell clam, Mercenaria mercenaria, purchased at commercial

Total hydrocarbons in store samples were generally higher than in samples collected
from a control location in lower Narragansett Bay. Polycyclic aromatic hydrocarbons
concentrations were similar to levels reported for other shellfish species. Two
substituted benzotriazoles also were detected in clam extracts. Levels of polycyclic
aromatic hydrocarbons and substituted benzotriazoles were also generally higher than
in samples from the control location in the lower Bay. The significance of these find-
ings to human health was unknown at this time because human health standards for
these compounds in seafoods have not been established. (J.L.M.)

Digestion in filter feeding bivalves - a new concept. Proc. Malacol. Soc. Lond. 39,
Pt. 4:253-262.

In certain genera the digestive processes are now known to comprise a chronological
sequence of events associated with some exogenous or endogenous rhythm. Thus,
it will be essential to make adequate provision for this possibility in all future investiga-
tions. With respect to investigations on the Bivalvia, a tidal simulator and/or kymograph
have become essential pieces of equipment to any biochemist. Mercenaria mercenaria
is not mentioned. (J.L.M.)

Growth enhancement of Mya arenaria Linne and Mercenaria mercenaria (Linne) by

Juveniles of Mya and Mercenaria were alizarin-stained and cultured for 12 weeks in
flowthrough tanks containing one of three different species of macroalgae. Clams grown
with Ascophyllum nodosum Linnaeus and Laminaria longicruris De la Pylaie were
significantly larger in shell dimensions than controls and those grown with Ulva lac-
tuca Linnaeus. Treatments with Ascophyllum and Laminaria were 12.6% and 9.6%
larger than controls, respectively. (Modified author's abstract - J.L.M.)

Prog., Univ. Fla., Gainesville, FL. 32611, Prog. IR-85-7, Grant NASSAA-D-SG059.

Despite management and environmental problems the U.S. clam fisheries are operating
at record levels. The hard clam is the most valuable of the four primary east coast
species. Production has been under stress in New England and in the middle Atlantic
coast, but this has been offset by increased production in the south, particularly in
Fla. (J.L.M.)

Skeletal growth of aquatic organisms - Biological records of environmental change.

This volume is a valuable literature review of skeletal growth which should be consulted
by all workers on hard parts of aquatic organisms. The papers review Mercenaria mercenaria
extensively, and many other mollusks, but other organisms

The mollusk shell: Biological record of environmental change, p. 1-4. EPA-
600/3-81-019, EPA Research and Development, Environ. Res. Lab., Narragansett,
RI 02882.

Species such as Mercenaria mercenaria are ideal candidates for study because their
long life-span allows analysis of skeletal records that encompass predisturbance growth
conditions and postdisturbance recovery. Ontogenetic growth records, demograph-
ographic parameters, after-the-fact pollution studies, identification of adaptive strategies,
and fishery management are some of the factors that can benefit from growth studies.
(J.L.M.)

298 Rhoads, Donald C., and Giorgio Pannella. 1970.
The use of mollusk shell growth patterns in ecology and paleoecology. Lebana
3(2):143-161.

The relationship of growth patterns to specific environmental factors was studied by
transplanting trays of bivalves from one environment to another. Juvenile Mercenaria
mercenaria were transplanted from holding tanks to the intertidal zone and finally
to a subtidal environment. The sequence of events was recorded accurately in
the microgrowth patterns of all specimens. Growth over the period of study could be
followed on a day-by-day level of resolution. Growth rate decreased after the transplant
from holding tanks to the intertidal zone and from the intertidal to the surface of a
subtidal mud bottom. Growth increased, however, from the intertidal to sub-
tidal environment in specimens elevated above the turbid mud bottom. Growth rate
was higher in specimens living in sand than in those living in mud in all stages of
the experiment. Mercenaria deprived of its natural substratum exhibited marked
changes in its microgrowth patterns. Large varices, periostracal extensions, and sharply
defined daily growth bandings marked the period of growth without a granular
substratum. Changes in shell structure were also observed during the period of growth
without sediment. The mollusk shell may be considered as a long term continuous
environmental recorder. Additional research is required to be able to identify par-
ticular recorded patterns with specific environmental conditions. (J.L.M.)

Seasonal dynamics of detritus in the benthic turbidity zone (BTZ): Implications for

The benthic turbidity zone (BTZ) is an open adaptive zone for commercially import-
ant eulamellibranchs. It is possible that bioturbating activity might decrease if mollusks
were grown in the BTZ. This negative feedback might have to be allowed for. (J.L.M.)

Optimum algal concentrations and algal consumption rates for bivalve larvace in culture,

In two separate types of experiments with larvae of the northern quahog Mercenaria
mercenaria and northern bay scallop Argopecten irradians irradians optimum con-
centrations of Isochrysis aff. galbana for growth were determined, and estimates made
of algal consumption rates. This presented a clear picture of larvace-food interactions
in culture systems, and suggested some new feeding strategies. (Modified authors' abstract - J.L.M.)

Statistical analysis of digestive gland tubule variability in Mercenaria mercenaria (L.),

Four main tubule types, signifying various stages of intracellular digestion, can be
recognized: I, holding; II, absorptive; III, fragmenting; and IV, reconstituting.
Digestive tubules and similar tubule types are not distributed randomly within the
digestive gland, but are grouped together around common secondary ducts. In
Mercenaria mercenaria variability of tubule types is high within individual digestive
glands, as well as between individuals sampled at the same time. Based on calcula-
tions to minimize total variance, it is better to sample a small area from numerous
individuals rather than a large area from a few animals. Problems imposed by variability
and tubule clustering have not been considered adequately in previous investiga-
tions of digestion. (J.L.M.)
The variability of the four tube types previously recognized in the digestive glands of bivalve mollusks (e.g., holding, absorptive, fragmenting, and reconstituting) was investigated using photomicrographs. The clustering of similar tube types around common secondary ducts was observed histologically and by statistical analysis. Intra-animal variances were approximately the same for each species. Inter-animal variances were also similar but only 10% to 25% of the intra-animal values. Sampling schemes involving large numbers of animals but few photomicrographs of each digestive gland would minimize overall variance. The necessity of taking numerical data and using proper statistical analysis is stressed. (J.L.M.)

Thesis not available at University of Southampton. (J.L.M.)

Four bivalve species were grown in the system, Ostrea edulis, Crassostrea gigas, Tapes decussatus (= Venerupis decussata), and Chlamys varia. The system was less productive, per unit area, than some natural populations of bivalve, but probably approached the maximum attainable in a semi-closed system relying on in situ primary productivity. Mercenaria mercenaria is mentioned only with reference to papers abstracted elsewhere in this bibliography. (J.L.M.)

305 Romerill, M.G. 1979.
A change of metal concentration with age was the most easily recognized relationship. All metal concentrations were lower at the seaward end of the estuary, and sediment metal levels generally followed a similar trend. But tissue andsediment values appeared to correlate with each other only for iron. Effects attributable to the Marshwood Power Station were insignificant in relation to natural variability. (J.L.M.)

The extent to which shell chemistry of bivalves can be used to make environmental and evolutionary interpretations is, at present, unclear. Shell composition is complex, varying with position in the shell and with ontogenetic age. The distribution of elements in a shell must be fully described before interpretation can be made. The description of chemical ontogeny and allometric variations promised to be a long and difficult task with present analytical methods. (J.L.M.)

A combined tertiary sewage treatment-marine aquacultural system has been designed and successfully tested on a small, experimental scale. Effluent from secondary sewage treatment, diluted with seawater, is used as a source of nutrients for growth of unicellular marine algae, and the algae, in turn, are fed to oysters or other shellfish (e.g., Mercenaria mercenaria). The algae remove the objectionable constituents from the secondary sewage effluent (ammonia, nitrate, phosphate, etc.) and the algae are removed by the oysters or other shellfish. The products are purified waste effluent, which will not support further algal growth (undesirable "algae blooms") in natural waters and a commercially valuable crop of seafood. Using a continuous flow mode of operation the process was capable of removing 95-100% of the inorganic nitrogen content of the sewage effluent, the discharge from the system being unable to support further algal growth and often containing less nitrogen than the receiving seawater. Dissolved wastes, produced as excréter products of the oysters, are removed by a final "mop-up" step consisting of macroscopic algae (seaweeds), of which several species have been tested. It is projected that this basic system should be capable of providing advanced (tertiary) sewage treatment for a population of 50,000 people with the ancillary annual production of 900 tons of oyster meats or 250,000 bushels of whole oysters worth $1-5 million. Space required for an operation of that scale would be some 144 acres as compared with about 110 acres for a conventional filterbed, land disposal system. (Modified author's abstract - J.L.M.)

During the first year the pilot plant operated, shellfish culture was largely unsuccessful. Seed clams (Mercenaria mercenaria) showed poor growth and high mortality. This was believed to be due to unresolved problems such as unfavorable culture conditions in the raceway system, unfavorable algal food of Pseudoactinum tricornutum, reported in the literature as poor to indifferent food for bivalves, or an inferior stock of shellfish whose growth was stunted prior to or after acquisition. Data from small-scale experiments and from the literature indicate that enough algae were produced from a million gallons per day of sewage effluent to grow 11 million market-sized oysters per year. This possibility must remain speculative until a successful method of shellfish production is demonstrated and evaluated. (J.L.M.)

It is suggested that the recent success of the Indian River clam fishery may have resulted from unusually heavy rainfall during 1982, and above-normal rainfall during 1983 and 1984. This is only theory, however, and must be confirmed by monitoring and meteorological data. (J.L.M.)

310 Ryther, John H., and Joel C. Goldman. 1975.
The best food organisms were the small flagellates Isochrysis galbana and Monochrysis lutheri. For Mercenaria mercenaria best growth occurred at cell concentrations of about 2.2 x 10^9 cells/mL of either species. Most of the algae tested produced growth of M. mercenaria ranging in size from about 0.5 to 10.0 mm. Exceptions were the dinoflagellate Amphidinium klebsi and several species of Chlorella, Stichococcus, and other coccoid algae, which usually gave less growth than unfed controls. Good growth was obtained with diatoms (S. costatum, P. tricornutum) and with several small flagellates, but the best results were obtained with mixtures of three or four diatoms and flagellates. Walne (1970) also published an extensive survey of the relative food value of 25 species of 19 genera for juvenile (0.5-5.0 mm) clams (M. mercenaria) and got similar results. Large-scale sea farming operations involving use of cultivated microorganisms is not a reality at present. (J.L.M.)

312 Ryther, John H., Joel C. Goldman, Cameron E. Gifford, John E. Huguenin, Asa S. Wing, J. Philip Clarner, Lavergne D. Williams, and Brian E. LaPointe. 1975.
A combined tertiary sewage treatment-marine aquaculture system was developed, tested, and evaluated at Woods Hole, MA, and Fort Pierce, FL. Domestic wastewater effluent from secondary sewage treatment mixed with seawater was used as a source of nutrients for growing unicellular marine algae, and the algae, in turn, were fed to oysters, hard clams (Mercenaria mercenaria), and other bivalve molluscs. The output from each algal pond was fed into cement raceways which contained, among other molluscs, 150,000 seed clams ~1.25 cm long. The raceway containing hard clams was stocked with 1,400 "bait worms" (Ostrea virginica) ~2 cm long. It was expected
that these worms would grow on clam biodeposits. To provide worms with shelter and reduce cannibalism the bottom of the raceway was lined with beach stones because fine sand tends to become anoxic. (J.L.M.)

Environmental factors have a more or less dominating influence upon organic life, and can lead to a reduction of growth development. For a temporary slowing down and a momentary stagnation growth functions can be modified as was recently shown by the author (Sager 1982). This method does not apply to stagnation over weeks or even months, however, as is the case for different species including fishes and clams. Therefore a second revision is necessary for such a special behavior. A new formula is presented and tested for the bivalve Mercenaria mercenaria of Southampton Water, English Channel. (Author's abstract - J.L.M.)

Reference to Mercenaria mercenaria studied by other authors is included under references. (J.L.M.)

Contains numerous references to Mercenaria mercenaria, most of which are by other authors abstracted elsewhere in this bibliography, but some of which are previously unpublished observations. (J.L.M.)

This book confines the series begun with Wilbur and Yonge (1964). Chapters by Morton (65-147), Jones (189-238), Burton (291-352), Martin (353-405), and Bayne (407-486) are pertinent to Mercenaria mercenaria even in places where M. mercenaria is not mentioned specifically. The book should be read for information on feeding and digestion, circulatory system, ion regulation and water balance, excretion, and immunobiology. (J.L.M.)

Mercenaria mercenaria larvae were sampled in Barnegat Bay, and densities up to 67,000/m2 were reported in Little Egg Harbor. (J.L.M.)

318 Santoro, Peter F., and Joel A. Dain. 1981.

B-N-acetylglucosaminidase was partially purified from the digestive gland of hard clam, soft clam, and surf clam and their properties compared. Heat inactivation studies on the B-N-acetylglucosaminidases preincubated at 45°C showed that the preparation from surf clam was stable up to 60 minutes, whereas that from soft clam and hard clam lost 47% and 91% of their original activities under the same conditions, respectively. D-glucuronolactone is more inhibitory towards the soft clam enzyme, while HgCl₂ is less inhibitory towards the surf clam enzyme. The Vₐ₅₀ value for B-N-acetylglucosaminidase from hard clam was about 2.5-fold “greater” than that from the other two bivalves. The pH optimum, Kₐ₅₀, molecular weight, energy of activation, and effect of ionic strength on enzyme activity were similar for all three species. The digestive gland of all three species also contained several other activities. (J.L.M.)

Toadfish are much less sedentary than formerly thought. No mention of food. (J.L.M.)

320 Scott, Roy F. 1981.
Present commercial fishery consists of a few individuals taking clams in summer, and 5 to 10 hydraulic dredges working in winter. Harvesters are restricted to 8,000 clams/day. The dredge fishery is expanding because prices are higher and the population is increasing, allowing a harvest of 4,000 to 5,000 clams per boat per day. Shell areas increase recruitment by providing a better opportunity for settling and reducing crab and fish predation. Hard clam is relatively long-lived and more susceptible to overfishing than short-lived soft clams or blue crabs. It is believed that Maryland’s hard clam fishery can be most efficiently served by: 1) a shell planting program to improve the habitat; 2) encouraging private clam culture; and 3) careful monitoring of the harvest and status of the clam population. The Tidewater Administration barged 43,000 bu of oyster shells from Chincoteague and planted on a 17-acre site east of Mills Island. The area will be cultivated and opened to clam harvesting in 3 yrs. Planting efforts will be continued. Hard clam culture has excellent potential. (J.L.M.)

321 Seed, Raymond. 1980.

On page 54 is a figure showing burrowing habit of Mercenaria. (J.L.M.)

Mercenaria mercenaria grown in raceways did not grow significantly in 18 months. A good food organism, Skeletonema costatum grew best only in winter, at temperatures between 0°C and 9°C. During the remainder of the year the diatom Phaeodactylum tricornutum was dominant, but this species is known to be a poor food for most bivalves. In the author's opinion using wastewater for aquaculture is limited. Yet one cannot overlook the role these wastes could play at the hatchery level, when shellfish are small and food demand is not great. (J.L.M.)

Mercenaria mercenaria was not included among the six bivalve species experimented with. (J.L.M.)

Reviews papers by Weiner and Hood, Crenshaw, Gordon, and Carricker and Young, Crenshaw and King abstracted elsewhere in this volume. (J.L.M.)

Data on commercial landings of most species caught in New York Bight show no signs of adverse effects on abundance. Mercenaria mercenaria landings are somewhat lower, but there is no evidence that pollution in New York Bight has been a cause. (J.L.M.)

326 Squires, Donald F. 1983.
A rather complete review of the potential for aquaculture in New York State including hard clams (Mercenaria mercenaria). Includes discussion of present status of aquaculture, aquaculture and the law, social and political attitudes toward aquaculture, economic constraints, marketing constraints, and biotechnical constraints. (J.L.M.)
327 Stanley, Steven M. 1969.

Oblique and chevron-like ridges on the shell surfaces of certain burrowing bivalve mollusks grip the sediment during shell-rocking movements to aid in sediment penetration. These ridges, characterized by steep dorsal slopes and gentle ventral slopes, have evolved through convergence in several families in association with particular behavioral and ecological traits. No specific mention of Mercenaria mercenaria. (Modified author's abstract - J.L.M. and M.W.S.)

328 Stanley, Steven M. 1975.
Why clams have the shape they have: An experimental analysis of burrowing. Paleobiology 1(1):48-58.

The prosogryous shape and flattened lunule of a typical clam shell such as Mercenaria mercenaria form a blunt anterior, the function of which is related to the forward-and-back rocking motion of the shell in burrowing. Analysis of movies revealed that each rocking motion of a morphologically typical clam involves purely rotational movement, with no translational component. The clam is able to burrow by "walking" its way downward only because the axis of backward rotation lies to the anterior of the axis of forward rotation. Experiments with burrowing robots show that the blunt anterior serves to shift the axis of backward rotation anteriorly, thus aiding in downward progress. The prosogryous condition and the rotational mechanism of burrowing are fundamental adaptations of burrowing clams and were apparently present in the ancestral bivalves of the Cambrian. (Modified author's abstract - J.L.M.)

329 Steimle, Frank W., Jr. 1982.

No mention of Mercenaria mercenaria. (M.W.S.)

Waste disposal in the apex of New York Bight has resulted in contamination of sediments by toxic chemicals and some alteration to the community composition of the benthic macrofauna. This paper presents data on an extensive survey of the macrofauna biomass. Mercenaria mercenaria is not mentioned. (J.L.M.)

Crepisula fornicate, Mytilus edulis, and Astrangia danae all removed glycine from sea water, and Astrangia also removed glutamic acid, methionine, alanine and arginine. Mercenaria mercenaria was not tested. (J.L.M.)

Reviews a paper by Stephens and Schinske abstracted elsewhere in this volume. (J.L.M.)

Field planting of nursery-reared seed through the cooperative project has increased from 600,000 seed in 1990 to 2.4 and 2.9 million seed in 1981 and 1982. Field plants for 1983 are projected to exceed 12 million seed. Harvest size (45-50 mm) clams were retrieved from initial plants in Nov. 1982, exactly 24 months from first primary unit deployment. Mean recovery from secondary field units harvested to date was 79% and overall field survival was over 50%. This paper summarizes results to date. (Modified authors' abstract - J.L.M.)

Mercenaria mercenaria is mentioned only in connection with the work of others, abstracted elsewhere in this bibliography. (J.L.M.)

Growth of shellfish in an artificial upwelling mariculture system. Proc. Int. Symp. Coastal Upwelling, Nov. 18-19, 1975, p. 25-42. La Universidad, Coquimbo, Chile. Ten species of shellfish were screened for growth and survival in the St. Croix mariculture system. Eight species, all except Crassostrea virginica and Mercenaria mercenaria, grew well and reached market size quickly. M. mercenaria grew poorly and sustained high mortalities at all locations. (J.L.M.)

Initial community development was relatively unpredictable. Larval recruitment patterns varied markedly from year to year. Instead of preparing the way for subsequent arrivals, most resident adults strongly inhibited recruitment and growth of other species. Mercenaria mercenaria was not included in fouling communities. (J.L.M.)

Lists Venus verrucosa from the English channel, the southwest of Ireland, Irish Sea, and west coast of Scotland, south to the Iberian Peninsula, into the Mediterranean, Canary Islands, Cape Verde Islands, Madeira, and down the west coast of Africa to Mossamedes (Angola) and from the Cape of Good Hope around to Durban and Delagoa Bay. Venus casina, common around the British Isles, south of Norway to the Iberian Peninsula. Eight species, all except Crassostrea virginica and Mercenaria mercenaria, the first living specimens of which in the United Kingdom were found in the Humber River in 1860 (a dead shell, probably originating in a ship's ballast, was found in the Mersey River in 1859). Since that time it has been reported from the Menai Straits. Unsuccessful attempts have been made to introduce it into the Dee (Cheshire) and Mersey estuaries. Large colonies have become permanently established in the Solent, Southampton Water, and Portsmouth Harbor, possibly introduced from the islands of Transatlantic liners. Recently, experimental colonies have been introduced into the River Yealm, Devon, Poole Harbor, Dorset, the Rivers Crouch, Rouch, and Blackwater, and at Walton, Essex. It was introduced into various places in France, but none of these was successful until 1910 when a population deposited in the basin of the River Seaudre became properly acclimatized. This was the basis for a now flourishing clam fishery. It has also been reported from various places in Brittany, where colonies still survive, in Zeeland, the Netherlands, and in Ostend Harbor, Belgium. Shell solid, equivale, inequilateral, beaks in the front half of the shell, rarely more than 5° (12.7 cm) long, broadly oval in outline; dirty white, light varnish-brown, dull grey or grey-brown, occasionally with red-brown zig-zag markings near the margins. Periostracum grey-brown. Ligament a deeply inset, dark brown elliptical band, behind the beaks reaching half-way to the posterior margin. Lunule well defined, broad, heart shaped. Escutcheon indistinct. Sculpture of concentric lines, raised here and there into ridges, and fine radiating lines. In young specimens ridges are present all over the shell, but in the adult they persist, after wear and tear, only near the anterior and posterior margins. Growth stages prominent. Both valves with three cardinal teeth; in addition there is present in each valve a rough tooth like area behind the beaks and immediately below the ligament; this area has the appearance of a supplementary posterior cardinal tooth which has been broken off. No laterals. Inside of shell white, sometimes deep violet about the adductor muscle scars. Pallial sinus not deep, triangular. Margin crenulate. Venus mercenaria lives in mud, with stones and shells, from between tidemarks to depths of a few fathoms, being most abundant a short distance above low-water mark. It is native to the coast of North America from Nova Scotia to Yucatan where it is harvested in some places as a wild crop for sea food. (J.L.M.)

338 Terry, Orville W. 1974.

A general discussion of aquaculture in New York without reference to species. (J.L.M.)
Larvae of Venus mercenaria are easily nourished by a quantity of different ultraspiculum organisms, most of which are disregarded by the much more particular larvae of Crassostrea virginica. No other mention of Mercenaria (Venus) mercenaria. (J.L.M.)

Mercenaria mercenaria is not mentioned. (M.W.S.)

The study includes Mercenaria mercenaria. They dig into the sand by a series of steps, which continue until the animal is beneath the surface. Digging cycles consist of six different phases of activity, and involve integration of pedal protrusion and retraction with opening and closing of valves, much of the musculature of the body playing a part in each cycle. The hinged shell acts as the basis of a fluid-muscle system which allows the strength of adduction to be used in digging. The fluid-muscle system consists of two separate fluid-filled chambers, the haemocoel and the mantle cavity, adduction generating high pressures in each equally and simultaneously. In the haemocoel this pressure gives rise to the characteristic dilated form of the foot which ensures a secure pedal anchorage so that at retraction the shell is drawn down. From the mantle cavity the pressure produces powerful jets of water which assist movement of the shell by loosening the adjacent sand. Subsequently the foot is protracted with probing movements by means of the intrinsic pedal musculature at relatively low hydrostatic pressures, while the shell is held still by the elastic ligament pressing the valves open against the substrate. The hinge teeth function to maintain contact between the valves dorsally during digging, when the valves are gaping ventrally. The possibility that the tissues adjacent to and between the teeth contain tactile receptors is considered and the nervous coordination of digging is discussed. (Modified author's synopsis) (J.L.M.)

While a largely muscular tissue suffices to supply the necessary forces for movement over hard surfaces, burrowing requires greater forces and has resulted in the convergent but separate development of a large pedal haemocoelic cavity in Bivalvia and Gastropoda. There is no evidence for the development of a large coelomic cavity for locomotory purposes in the Mollusca, as occurs in the Annelida, and the origin of the molluscs from a pre-annelidan acelomate worm is likely. Mercenaria mercenaria is not mentioned. (J.L.M.)

Reference is made to Mercenaria mercenaria studied by other authors abstracted elsewhere in this bibliography. (J.L.M.)

344 Turgeon, Donna DeMoranville. 1968.
Mercenaria mercenaria, M. M. notata, and M. camphecchensis are assigned to the Superfamily Veneracea. The northern hard clam has a shell subtriangular to roundly ovate, posterior half narrower and slightly drawn out; heavy, inflated; equivale; iniquilateral; umbones prominent in anterior third of shell, beaked anteriorly and directed toward each other, nearly touching; rarely more than 127 mm (5 inches) in length; color white, dull gray or straw-yellow to flesh tones. Lunate conspicuous, heart-shaped. Escutcheon indistinct. Periostracum often worn and inconspicuous, fawn to chocolate-brown. Ligament dark brown, posterior to beaks and reaching halfway to posterior margin. Sculpture of strong concentric ridges and radiating ribs, center of valves often worn smooth; growth incements prominent. Interior of shell flat white or blue-violet in color; sculpture lacking. Three teeth in each valve, left with anterior tooth large and posterior bifid; right with large posterior tooth and two oblique contiguous teeth, rough irregular points below hinge interlocking with those of opposite valves; lateral lacking. Muscle scars subcircumcular and impressed, often having colored sculpture. Sinus triangular, shallow, apex directed toward ventral portion of anterior muscle scar. Margin crenulate. Siphons short and united. Found abundantly in a wide variety of substrates intertidally to channel depths. In Virginia it is found where salinities are above 15‰; under laboratory conditions Charley (1958) states. 12.5‰ is the lower survival limit. The form M. m. notata is rarely found in Virginia. It coexists with M. mercenaria in the same habitat. The shell is shiny, white, tinged with sand-brown and with red-brown zig-zag marks; the surface is almost smooth. Range; Nova Scotia to the Gulf of Mexico; introduced to California, United Kingdom, Netherlands, Belgium, and France (Tebble 1966). The southern hard clam has the following distinguishing features from the northern: shell thicker, heavier and more-obsolete; up to 168 mm (6 1/2 inches) in length (Simms 1965); growth ridges deeper and retained longer in young specimens; color white, rarely with blue or violet stain on escutcheon and brown zig-zag lines on the side. Lunule usually as wide as long. Internal color usually white. It is uncommon in Virginia and exists only in the lower reaches of the Bay and offshore. Range; New Jersey (offshore) to Cape Canaveral and the Gulf of Mexico (Abbot 1954). (References abstracted elsewhere in this bibliography - J.L.M.)

345 Turner, Elizabeth J. 1983.
Samples of Mercenaria mercenaria were obtained from Moriches Bay, Long Island, NY, a shallow lagoon which in 1980 had a breach in the barrier island separating the Bay from the Atlantic Ocean. The breach was closed artificially by 1981. Shell growth rates in eastern Moriches Bay averaged 1.7 mm per 30 days in 1980, and 1.8 mm per 30 days in 1981. No significant differences were seen between years at any station except Narrow Bay in western Moriches Bay, where growth rates in 1980 averaged 1.6 mm per 30 days and those in 1981 averaged 2.3 mm per 30 days. Results can be related to salinity conditions within the Bay, and how those conditions may have changed in response to the breach. (Modified author's abstract - J.L.M.)

In a previous report an experiment was described which demonstrated that quahog (Mercenaria mercenaria) eggs exposed to dense suspensions of sperm usually develop into abnormal larvae which fail to survive to the settling stage. When sperm first penetrates the egg, a change in the surface occurs which prevents any other sperm from entering. However, when sperm suspensions are thick, two or more sperms may enter the egg before the barrier is developed, and the resulting chromosome number may be 54 or 72 rather than 36. Cells receiving more or less than 36 chromosomes develop abnormally, and even cells receiving exactly 36 sometimes develop in peculiar fashion. They seldom lived more than a few days. (J.L.M.)

The major finding of this impact assessment is that as a result of salinity increases projected for Great South Bay from complete sewerage in contiguous areas of Nassau and Suffolk Counties, there could be an 8% decrease in standing crop of hard clams Mercenaria mercenaria in the study area of Great South Bay. The most probable reason for the present decline in hard clam production is overharvesting. Clam resources in South Oyster Bay and in Nassau County bays will not be affected as much, and the projected decline in Brookhaven town will also be lower. Increased predation on clam resources will result in economic losses to the local economy amounting to $9.8 million. (J.L.M.)

Extension of siphons was used as a criterion of activity to examine the response of the hard clam Mercenaria mercenaria to various combinations of test and acclimation temperatures and salinities. A quadratic regression model for the percentage of clams active as a function of the test temperature and salinity was assumed, and response surface contours for various percentages of activity were calculated and plotted. The regression model accounted for 72 to 88% of the observed variability in the 13 experiments considered. Contours are hyperbolic instead of elliptical for five of the
experiments. No biologically meaningful estimates of lower and upper temperature and salinity limits can be obtained in such cases. Low levels of activity, even at optimal T-S combinations, occurred in summer. Some observed shifts in position and shape of T-S response surfaces were expected in light of shifts in acclimation temperature or salinity. Other shifts in response surface could not be accounted for. The results suggest T-S limits necessary for purification of hard clams. *M. mercenaria* is only moderately euryhaline. Purification of hard clams should not be considered at salinities below 20‰ and is likely to be most successful at salinities above 22 to 23‰. The two March experiments suggest that purification of hard clams should not be considered at temperatures below 10°C. Results of spring and fall experiments suggest that purification should not be considered at temperatures above 30°C and are likely to be most successful at temperatures of 25°C and below. Results of summer experiments suggest that it may be difficult to purify hard clams from June to August, regardless of temperature and salinity conditions. Other studies at Rutgers have led to conclusions that depuration of hard clams should not be attempted when activity levels drop below 50%. (J.L.M.)

Increased predation is the most important effect that the projected salinity increase caused by construction of sewers could have on the clam resources of Great South Bay. Predators that probably will increase in distribution and abundance are whelks, moon snails, calico crabs, oyster drills, and hermit crabs. The average hard clam loss from increased predation was 8% of the 1978 standing stock. The projected salinity increase is not likely to have a substantial effect on hard clam reproduction and survival. The increased predation could bring economic losses - the Towns of Babylon, Islip, and Brookhaven could have a combined loss of about $2.8 million at current prices, per year. (J.L.M.)

Feeder creeks (generally less than 4.5 m wide and several hundred m long) appear to be the best habitat for clam mariculture in Georgia. Many clam predators do not occur there. Seed clams (6 mm) planted in densities up to 3207/m² can be grown to shell lengths greater than 20 mm within 7 months with greater than 80% survival if planted in spring or summer and if crabs are removed from their cages at least once a month. Once clams reach a shell length of 25 mm they can be transplanted into plots with baffles or into creeks using shell cover and/or tent structures as protective cover, or left in cages after densities have been reduced. Baffles, cages, and pens placed in major creeks or open areas in Georgia sounds do not protect clams. Beds in small feeder creeks are nominally protected from boats, vandals, and wave action. (J.L.M.)

Growth of stocks of *Mercenaria mercenaria* planted in the coastal waters of Georgia were as follows: Virginia<Georgia>Massachusetts. Growth, production, and the effects of fishing pressures were observed for three natural clam populations in Wassaw Sound, GA. Growth rates between stations did not vary significantly. Annual production, mean standing stock, and average clam density decreased from commercial fishing for Cabbage and Wassaw Island clam populations, but remained about the same for the Little Tybee Island clam population, which had no substantial fishing pressure. A minimum legal size limit of 44.4 mm shell length or 25.4 mm shell height is recommended for the commercial harvest of Georgia hard clams. At this size clams are approximately 3 years old and have passed through at least one reproductive cycle. If a clam fishery is to exist in Georgia several events must occur: 1) a thorough survey for clam populations; 2) establishment of a water quality monitoring program; 3) enforcement of current shellfishing laws; 4) reevaluation of the shellfishing leasing system(s); and 5) development of local markets. (Modified author's abstract - J.L.M.)

Hard clams, *Mercenaria mercenaria*, were planted in predator-free cages on an intertidal sandflat at Cabbage Island at densities of 509, 1009, 2018, and 3027 clams/m². Replicate plots per density were sampled monthly. Clams at all four clonal densities sampled seasonally grew significantly more in shell length than those sampled monthly and within the same time period. The seasonally sampled cage was lost after 6 months. Clams planted at the lowest density and sampled monthly reached commercial size (44 mm) in 16 months, and 52% of the clams were of legal size. After 19 months 83% of clams at 509/m² had achieved legal size compared with 37, 13, and 3% for clams grown at 1009, 2018, and 3207/m². Overall clam survival increased from 77% after the first month to 99% or better 3 months later, and remained greater than 99% throughout the remainder of the experiment. Survival of clams less than 18 mm shell length depends on monthly removal of newly-metamorphosed crabs from the cages. (Modified author's abstract - J.L.M.)

Results were planted in predator-exclusion cages at 1000 clams/m² at a measured initial shell length of 10.4, 11.0, and 12.8 mm for Georgia, Virginia, and Massachusetts stocks, respectively. Georgia clams grew from 10.4 to 28.7 mm in the first year and 45.2 mm in the second year. Virginia clams grew from 11.0 to 36.9 mm in the first year to 51.6 mm after 2 years. The Virginia and Georgia stocks reached commercial size (44.4 mm) in 24 and 33 months, respectively. Massachusetts clams grew from 12.8 to 23.9 mm in the first year. First year survival for Georgia, Virginia, and Massachusetts stocks was 29%, 31%, and 14%, respectively. No significant difference in survival between stocks was observed. Survival in the second year for Georgia, Virginia, and Massachusetts was 46%, 8%, and 0%, respectively. Mortalities in the first year were caused by blue crab and common mud crab predation. In the second year mortalities were caused by storm activity. (Modified authors' abstract - J.L.M.)

Sampled 2227 stations representing 1385 m² of bottom for hard clams. Clams occurred at 11.6% of stations and most (61.5%) occurred intertidally. Of subtidal clams 65% were in water less than 1 m deep. Highest densities were in shell (3.1/m²) and decreasing amounts in sandy-mud, mud, and sand. They occurred most frequently in creek feeders, with lesser amounts in headwaters of creek and creeks and rivers, and were absent from sounds and nearshore areas. Of 1575 clams collected 46% were chowders, 24% chesapeake clams, 21% legitimate clams, 2% prelegitimate clams, and 4% juveniles. Large subtidal populations do not occur in coastal Georgia, and characteristic clam harvesters do not appear to be feasible. (Modified authors' abstract - J.L.M.)

Hard clams, *Mercenaria mercenaria*, occurred in four intertidal habitats in the outer, high salinity (18‰) region of Wassaw Sound, GA: small feeder creeks (x = 36/m²); oyster shell bar deposits (x = 31/m²); headwaters of shelly, sandy-mud, sand, and mud bottom creeks (x = 26, 19, 13, and 3/m²), respectively; and among live oysters (x = 1/m²). Clams from creek bottoms were larger (x = 7.3 cm) than those from intertidal flats (x = 4.7 cm) from differences in predation or harvesting pressures, not from differing rates of recruitment. Juveniles were absent from most areas, possibly because of increased juvenile mortality, natural sporadic setting, or restricted gonadal development from abnormally low spring salinity from 1977 through 1979. Clams from Little Tybee Island, where sediments are sandy-mud, had faster growth rates than those from North Cabbage and Wassaw Islands, where clam beds were in shell deposits. Clams older than 7 years dominated at Wassaw and Little Tybee Islands (64 and 71%, respectively) and younger clams dominated at North Cabbage Island (82%). These differences in age-class structures were attributed to different harvesting or predation pressures. Clams from Little Tybee and Wassaw Islands occurred in creek bottoms, whereas clams from North Cabbage Island occurred on intertidal flats in the open Sound. A greater variety of clam predators and greater densities of *Urosalpinx cinerea* and *Bursaon** spp. occurs on intertidal flats of the open Sound than on creek bottoms. Net reproduction of hard clams was 7.7 g ash-free dry weight (AFDW/m²)/yr at Little Tybee Island, 6 g AFDW/m²)/yr at Wassaw Island, and 2.7 g AFDW/m²)/yr at North Cabbage Island. Differences were attributed to differences in standing stocks, age class structure, and growth rate. Standing stocks were low (11 g AFDW/m²) at North Cabbage, moderate at Little Tybee (50 g AFDW/m²), and high (120 g AFDW/m²) at Wassaw Island. Turnover rates of Wassaw, Little Tybee, and North Cabbage Island populations were low (0.05, 0.14, and 0.23, respectively) because a high percentage of clams older than 7 years made up the populations. (Modified authors' abstract - J.L.M.)

Hard clam occurred in four habitats at different densities: live oyster bars (X < 1 clam/m²); shell deposits associated with oyster bars (X = 23 clams/m²); headwaters of sandy-mud, sand, and mud bottom creeks (X = 16, 12, and 3 clams/m², respectively); and small feeder creeks (X = 36 clams/m²). Clams were most abundant in intertidal areas. Clam beds were small and patchy. One of the larger and denser beds (50m²) in Wassaw Sound measured approximately 90 m, but this size was rare. Clams from creeks were larger (7.3 ± 1.6 cm long) than clams from intertidal flats (4.7 ± 1.8 cm). Juveniles (<3.7 cm) were absent from all locations. This recruitment failure may have been caused by recent high predation or from low salinity or spawning stress from heavy runoff. Predation was exerted by whelks, drills, rays, and crabs, especially blue crab, Callinectes sapidus. Density of shellfish peaked in fall and spring and was low in winter and summer. Drills were primarily Urosalpinx cinerea. Greatest density of clams occurred in substrates containing shell. (L.M.)

357 Watabe, Norimitsu. 1983.

Reference is made to Mercenaria mercenaria studied by other authors abstracted elsewhere in this bibliography. (L.M.)

358 Webber, Harold H. 1968.

American oyster (Crassostrea virginica) and northern hard shell clam (Mercenaria mercenaria) are the primary forms being reared for market, based on technology developed in the 1920s by Wells and Glancy of the New York State Fish and Game Commission and the Bureau of Commercial Fisheries Biological Laboratory at Milford, CT. Selected parents are cultured in the laboratory as a source of egg and sperm. Selection for growth rate, size, meat quality, and certain shell characteristics is being made. Because both species have very high fecundity, very few breeding parents are required. When spawning is desired, selected parents are transferred to trays through which water is precisely controlled for temperature is flowing. They are then subjected to a temperature with a controlled rate of change which will induce gonadal development and result in spawning. Since spawning is a completely predictable event and can be achieved on command, a set is assured. For the first 24-36 hrs after fertilization no feeding is required. The larvae are then transferred to large tanks and fed known quantities of known species of algae. After 10 days the veliger larvae reach the umbo stage and are ready to set, and they are transferred to settling tanks with cultch distributed over the bottom, maintained at a temperature of 28°C. Cultch bearing attached larvae is placed in polyethylene nets bags suspended in large concrete nursery tanks. The water is supplemented with a rich culture of small phytoplankton. Light and heat energy is provided through the walls and roof of polyester/glass fiber panels. Water temperature is controlled. Spot reach about 1/2 inch in diameter after 3 or 4 weeks. They are then transferred to rafts, still in the plastic bags, where they are readily accessible to be monitored and tended. They remain for about a month, when they have grown to 1/4 inches and can be put out in the bay on selected bottom and reared to market size. They may be lifted off the bottom and transplanted to other beds before they are finally harvested for sale. The success of this economically sound venture is based on fundamental biological research and empirical evidence. (L.M.)

Invertebrate communities associated with hard bottom habitats in the South Atlantic Bight. Estuarine Coastal Shelf Sci. 17(2):143-158.

No mention of Mercenaria mercenaria. (M.W.S.)

The study examines the statistical aspects of shellfish sanitation data for the period 1973-77 for Great South Bay, Moriches Bay, Flanders Bay, and the Huntington Bay complex. The nature of the multivariate fermentation tests greatly limits the information content of the data. The statistical fluctuations make it difficult to unangle the relative importance of storm runoff and tides and to compare fecal and total coliform results. The problem arises when one wants to use the data for purposes for which they were not intended. Nevertheless, the study shows that it is possible to obtain some answers by analyzing many years of data. (J.L.M.)

Predation was affected significantly by temperature and by the size of predators and prey. Larger P. herbstii opened more clams and preyed more successfully on larger clams than did smaller crabs. Increase in seed clam size and decrease in water temperature significantly reduced predation. Clam size appeared to be more important than crab satiation in reducing predation rate. Planting larger seed clams in cooler waters should help to improve clam survival by reducing the impact of P. herbstii in culture operations. No crabs less than 20.1 mm carapace width were successful in opening clams. Clams greater than 35 mm were not opened by any size of crab tested. Tests in pilot clam culture conditions are required before these methods can be recommended to clam culturists. (J.L.M.)

Temperature and salinity are the major factors that determine the type of aquatic system that develops in the Lagoon, together with the shallow waters. The temperature range past the five years varied from 460 to 90°F, salinity ranges in the northern portion were 14-44 ppt with a mean value of about 22-24 ppt, and depth range varied from 0 to 13 ft with an average depth of 5 ft. The major biological communities in the Lagoon are described. Some areas have "good" water quality, some have "fair," some conditions are enriched and some are degraded. (J.L.M.)

363 Whitman, Barbara Carr. 1978.

Benthic studies in Greenwich Cove showed that the Cove was an excellent environment for culture of hard clams (Mercenaria mercenaria), although commercial shellfishing could not be considered an appropriate course of action at this time. Soft clams also abound in the cove. Some zinc readings appear to be rather high and may relate to heavy use of galvanized pipe in the area. Few, if any, of the remaining metals are naturally found in clams at the levels indicated here, but none (except zinc) appear to be exceptionally high. (J.L.M.)

Reference is made to Mercenaria mercenaria studied by other authors abstracted elsewhere in this bibliography. (L.M.)

A letter taking issue with Levinton (abstracted elsewhere in this bibliography) with respect to the number of alleles with depth of burial. Levinton disagrees in part. (J.L.M.)

The extent of genic variability at enzyme gene loci is assessed in 12 species of marine bivalve molluscs including Mercenaria mercenaria. The data presented, although they are probably the most comprehensive yet available, are only the beginning of the application of biochemical genetics to molluscan mariculture. For the immediate future, the study of variability in wild populations is likely to remain the most pressing aspect of this work. (J.L.M.)

No remains of Mercenaria mercenaria were found in digestive tracts of 312 fish taken in 1978 and 1979. Mud crabs (Panopeus herbstii and Eurypanopeus depressus) dominated in 65% of digestive tracts in 1978 and in 32% in 1979. (J.L.M.)

Mercenaria mercenaria is mentioned with reference to a paper by Rice and Smith (1958) abstracted elsewhere in this bibliography. It is noted that the filtration rate with different particle concentrations of Naviculata did not show significant results. (J.L.M.)

Observations on the morphology and physiology of the blood cells of Venus mercenaria are included. There are three major types of blood cells: lymphocytes (or hyaline leucocytes), finely granular leucocytes, and coarsely granular leucocytes. Coarse granules are probably composed of nutritive material. Other materials in the blood are bacteria, cellular debris, and hyaline cell-like bodies. Blood cells probably play a prominent role in defense of the animal from microorganisms. Blood cells are important in nutrition, serving the functions of ingestion, distribution, and digestion. They have been shown to contain enzymes that digest margarine and gelatin. The plasma has been shown to contain enzymes that digest starch, margarine, and gelatin. (J.L.M.)

Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia 25(2):583-591.

In Crassostrea virginica heterozygotes attain larger size, thus producing more gametes than homozygotes, and may also have lower post-settlement mortality rates. The plausibility of models is judged by comparing predicted heterozygote deficiencies to values commonly reported in the literature for C. virginica and other species of bivalve. No specific mention of Mercenaria mercenaria. (J.L.M.)

The paper develops a reasonably general multiple cohort model and derives conditions for optimal harvest time and age structure based on a discrete time control problem which maximizes the present value of net revenues subject to recruitment and spawning constraints. The model is applied to the hard clam (Mercenaria mercenaria) resource in Great South Bay, NY. The steady-state optimum calls for exclusive harvesting of the younger, and more valuable, littleneck cohorts, leaving the older, and less valuable, cherrystone and chowder cohorts to specialize in regeneration. (Modified author’s abstract - J.L.M.)

The problem was that Conrad measured cohort stocks and yields in bushels, while the spawning constraint was measured in numbers of clams. Thus, the right-hand side of the spawning constraint must be divided by 500 to be consistent with the unit of measurement defined on the left-hand side, and thus a steady-state solution does not exist. (J.L.M.)

Evidence supporting the relationship between Gymnophyes breve and human illness became available in December 1962, when several persons became ill after eating oysters Crassostrea virginica and clams Mercenaria campechiensis taken in Sarasota Bay, Florida, during a “red tide” outbreak. A crude toxic substance was extracted from these shellfish, similar to ciguatera fish poison. Consideration of potential health-related aspects of G. breve “red tides” prompted this investigation. Hard clams taken from the head of Venice Inlet, 550 meters from the Gulf of Mexico, contained 270 mouse units per 100 grams of meats. Long-range goals of the project were: 1) identify and isolate the causative microorganism(s); 2) develop methods to maintain laboratory cultures; 3) isolate and purify samples containing the active material; 4) determine the chemical nature and structure of the poison; 5) investigate the conditions and mechanisms by which shellfish accumulate, retain, and eliminate the toxin(s); and 6) assist in developing analytical techniques for rapid determination of the poison. These objectives were satisfied. (J.L.M.)

Gross sedimentation of 14C labelled carbon was 58% greater in mesocosms (13 m^2) containing the bivalve Mercenaria mercenaria (16 individ/m^2) relative to controls without this filter feeder. The difference was attributable to the activities of M. mercenaria and presumably due to filtration of particles from the water column. Of this increase, 32% and 47% respectively were attributable to assimilation into clam tissue, and respiration by the benthic community. Permanent biodeposition by clams contributed the least (21%). The ability of eight filtration rate models to predict the increase in gross sedimentation was examined. Those models (four) which were based on data for bivalves filtering natural suspensions of particulate matter gave estimates which agreed well with observed differences. Those models (four) which yielded poor predictions used dyes or algal monocolourates to generate data and overestimated gross sedimentation due to bivalves by up to an order of magnitude. Such overestimation may exaggerate the role of bivalves in enhancing sedimentation and controlling phytoplankton biomass in shallow waters. (Modified authors' abstract - J.L.M.)

See Ritchie (1977) in McHugh (1982), citation 1552. (J.L.M.)

Except for FMRFamide and its analogs, most of the known neuropeptides are inactive on the isolated clam heart (Mercenaria mercenaria). However, and unexpectedly, the red-pigment concentrating hormone of prawns, and the ecdysone related adipokinetic hormone of locusts, are potent excitators of this preparation. The effect is especially intriguing in that only half of the hearts tested responded to these peptides. The mechanism of this unusual action is not known, but it is not related to sex or subspecies. Clam ganglia contain a red-pigment concentrating factor active in crustaceans, but its physiological significance in the clam is unknown. Much of this abstract was deleted because the mechanisms described have been described before, but it probably should be read by those not familiar with the earlier literature. (Modified author's abstract - J.L.M.)

Heterotrophic microflagellates are potential bivalve foods that may be more easily cultured in shellfish hatcheries than conventional algal strains. Microflagellates, which ranged in length from 2.6 to 7.8 μm included Paraphysomonas vestita, a colorless chrysophyte, two bodonids, and a choanoflagellate. Microflagellates were raised on estuarine bacteria cultured on brewer's condensed solubles (BCS), a syrupy byproduct of the brewing industry. Groups of 10 clams (Mercenaria mercenaria), with initial weights ranging from 5.3 to 6.8 g, were raised in 1-L beakers. Clams grew on diets of P. vestita and the unidentified colorless chrysophyte but not with the bodonids or the choanoflagellate. Clams fed comparable quantities of the alga Tetraselmis suecica showed greater growth than those fed microflagellates. Microflagellates, however, produce significantly greater growth rates than phytoplankton and can be raised in the dark at high cell densities. The sections that dealt with oysters (Crassostrea virginica) were not included in this abstract. (Modified author's abstract - J.L.M.)

The hard-clam fishery (Mercenaria mercenaria) in New Jersey operates in coastal bays from Raritan Bay to Cape May. Production has fluctuated from 453,600 to 2,268,000 kg (1 to 5 million pounds) per year since records began in 1889. Peak harvests in the late 1940s and early 1950s were followed by a sharp downward trend, coincident with closing of clam beds in contaminated areas. Since 1960 the reported harvest has been between 453,600 and 1,361,800 kg (1 to 3 million lbs). Because the price of clams increased from about $1.10 to $5.25 per kg ($5.50 to $2.50 per lb) between 1967 and 1983, however, the total value of the harvest has increased. The 1983 harvest of 590,000 kg (1.3 million lbs) was valued at $3.3 million. Since 1970 clammers have relied stocks from restricted (70-700 MPN/mL) and condemned (700 or more MPN/mL) areas to privately leased grounds in approved waters. Clams are marketed after 30 days at temperatures above 10°C. Relain clams account for 5 to 15% of each year’s total production. In July 1983, a depuration plant opened which can process clams from restricted water only. Between July and Dec. 1983, the depuration plant handled approximately 3 million clams (about 10% of annual production and equal to the number of relaid clams). Two individuals have operated hatcheries to provide seed for their own growout grounds for about 10 yrs. However, they produce less than 1% of the total New Jersey harvest. A third hatchery/growout operation started this spring. (Modified authors’ abstract - J.L.M.)

Mercenaria mercenaria is covered on pages 20-26. (J.L.M.)

The recent increase in landings in the North Carolina hard clam fishery has triggered concern about potential overfishing. This is investigated by contrasting historical data and the empirical supply curve with the long-run steady-state supply curve. The steady-state supply curve is derived from intertemporal maximization of social welfare subject to population dynamics. The empirical supply curve is estimated using a simultaneous equation model. The model components of the steady-state supply curve are estimated. The results show that the North Carolina hard clam fishery shows decreasing returns to scale with respect to respect stock. The maximum sustainable yield is not significantly different from 2 million pounds of meat per annum. Historical records show that the suspected biological overfishing has not been serious yet. But economic overfishing has occurred in the past and has reached serious levels recently. Since these results are based on the mean value estimated from the past 2 years’ catch-effort data, the maximum sustainable yield may be underestimated, and the economic overfishing statement may be too conservative. (Modified authors’ abstract - J.L.M.)

400 Kellogg, Robert L. 1985.
The study examines how dynamic bioeconomic models and optimal control theory can be used to help fishery managers formulate regulations consistent with economic efficiency and gains in social welfare. The model was estimated and applied to two North Carolina fisheries: bay scallop and North River shrimp. Mercenaria mercenaria was not used, but the general principles might apply. (J.L.M.)

The hard clam (Mercenaria mercenaria) is found along the eastern and Gulf of Mexico coasts of North America from the Gulf of St. Lawrence to the Yucatan Peninsula. It is the focus of an important commercial fishery. Larger clams (>80 mm) are used in chowder, little necks (<60 mm) and cherrystones (61 to 80 mm) are steamed or eaten raw. The fishery in Chesapeake Bay is understood only on a broad scale. Landings in Virginia have decreased from a high of 2.4 million pounds of meat in 1965 to a low of 0.4 million pounds in 1978. Maryland landings peaked to about 0.8 million pounds of meat in 1969 and reached a low of about 0.02 million pounds in 1979. Total landings and number of permits are the only catch and effort data collected, so catch-per-unit-of-effort as a measure of abundance is not possible. Accurate determination of catch and catch-per-unit-of-effort is not possible now even in the commercial or the recreational fishery. Varying price according to size of clam is not possible from published statistics. Also published statistics are less than actual landings by a considerable amount. Acquisition of accurate landings data can be obtained only through increased dealer participation. (J.L.M.)

Price flexibility coefficients estimated for exvessel prices of Virginia hard clams (Mercenaria mercenaria) show that a very small (4.292 × 10^-6 to 6.994 × 10^-6) decrease in price would occur given a 1% increase in the quantity supplied by Virginia harvesters. Data used were monthly landings of Virginia, New Jersey, Rhode Island, Maryland, and North Carolina over the period 1960-79. Fifty-eight percent of the exvessel price changes are not explained by the supply response model used, suggesting other market and consumer demand factors play a large role in determining exvessel price. Possible legislative changes to aid the fishery are: 1) use efficient harvesting technologies on private leased bottom, 2) seasonal use of efficient harvesting.
technologies to take advantage of seasonal peaks in exressed prices. 3) a new statistical
reporting system that reports every day of each harvester and the proportion of
each market grade caught. 4) establishment of subaqueous bottom areas specifically
for field culture of hard clams; and 5) set and enforce a minimum legal curl size.
(J.L.M.)

404 Langdon, Christopher J. 1985.
The culture of clams (Mercenaria mercenaria) is mainly dependent on algae as a source of
nutrients. But algae are expensive and undependable. One way of overcoming these
difficulties is to use artificial diets as a food source, but problems in presenting
microparticulate foods and in determining their optimum dietary composition have
hindered development of satisfactory artificial diets. Recent advances are reviewed.
Application of microencapsulation technology and use of dispersants and antibiotics
to control food particle clumping and bacterial growth are discussed. (Modified author's
abstract - J.L.M.)

Some observations on the longevity of the hard clam Mercenaria mercenaria (Linne).
In the late 1940s and early 1950s a series of mark-recapture experiments was con-
ducted. Two specimens were recovered alive in 1980. Interpretation of surface and
internal growth patterns of the prenotch shell regions suggested that each was approx-
imately 3 yrs old at the time of notching. The age estimates of 36 and 33 yrs for these
specimens are, to the best of the authors' knowledge, the oldest reported to date for this
species from long-term monitoring studies. (Modified authors' abstract - J.L.M.)

106(6):530-537.

The status and potential of public and private culture of the hard clam Mercenaria mercenaria
Juvenile "seed" hard clams are being produced by four commercial hatcheries on Long Island.
Seed from those hatcheries and from hatcheries in Maine and Massachusetts have been planted on public grounds by seven Long Island towns.
Ranging in scale from 0.1 to 3.0 million clams, these plantings are being carried out in
an effort to supplement natural recruitment. Most town programs include some type
of nursery system designed to grow clams from their 0.5-6.0 mm size at purchase
to 15-20 mm at planting. The programs have been carried out for several years, but
their contribution to the fishery has not been rigorously determined. Our preliminary
evaluation of those programs and experimental plantings on Long Island suggest that they are much too small to make a significant quantitative contribution to the public
harvest. The plantings might be useful to establish self-sustaining populations at specific
sites. Private hard clam culture involving rafts, floating stacks of trays, bottom boxes,
etc. has been carried out on Long Island by Blue Points Co., F.M. Flower Co., and
Shellfish Inc., among others. Nursery costs, lack of suitable underwater land, and
opposition from baymen continue to inhibit the expansion of private clam culture on
Long Island. (Modified authors' abstract - J.L.M.)

Mercenaria in South Carolina: Wildstock fishery and commercial mariculture. J. Shellfish.
The fishery in South Carolina began at the turn of the century but remained small and
localized until recently. Mechanical harvesting began in 1973 and greatly increased
annual yields. Latest available statistics (Sept. 1982-May 1983) show that the wildstock
industry now accounts for 3-5% of the national harvest and for the first time exceeds
the value of the state's oyster (Crassostrea virginica) landings. A summary of fishery
techniques and historical statistics is given for the state's wildstock hard clam fishery.
Mariculture began in South Carolina with tray growout experiments in the mid-1970s.
These led to a commercial-scale project involving public and private resources. The
cooperative project used a 3-step culture protocol: nursery culture to field planting
size; high-density primary field growout; and lower-density secondary field growout
to minimum market size. A discussion of the progress enjoyed by the project, its pro-
duction to date, and a summary of the potential of, and constraints to, hard-clam
mariculture in South Carolina is given. (Modified author's abstract - J.L.M.)

Gametogenesis in a population of the hard clam Mercenaria mercenaria (Linne) in
Adult hard clams were sampled monthly between Dec. 1977 and Feb. 1979 and semi-
monthly from March to June 1981 in North Santiee Bay. Observed gametogenic pro-
gression was best categorized by five stages of development: inactive, ripe, spawning,
partially-spent, and spent. Both sexes showed a complex progression of gametogenesis.
Gonadal tissue was not uniformly dominated by clearly defined, distinct stages. Instead gonads routinely exhibited several stages simultaneously and progress-
ion was documented through slow shifts in domination of stages in gonad tissue.
Spawning occurred continuously over a 6-month period (May-October) with at least
two apparent peaks of spawning activity in summer. Stages of gametogenesis en-
countered are described for both sexes and seasonal progression of gonad develop-
ment is discussed. (Modified authors' abstract - J.L.M.)

410 Manzi, John J., N.H. Hadley, C. Battey, R. Haggerty,
Culture of the hard clam Mercenaria mercenaria (Linne) in commercial-scale, upflow
The potential benefits of upflow nursery systems compared with traditional raceway
systems include maximization of space utilization, low construction cost, ease of
maintenance, and operational longevity. A commercial nursery facility for raising hard
clam seed in South Carolina uses upflow culture. The first year of operation of this
system shows how seed growth is analyzed in relation to seed density, water flow,
and environmental factors. Growth rates of seed from three different broodstocks is
reported. Performance of passive and active upflow systems are compared. Results
are compared with those from raceways and from an experimental-scale, passive upflow
system. (Modified authors' abstract - J.L.M.)

02541, 38 p. Unpubl. manuscr. submitted to T.P. Ritchie for preparation of A com-
prehensive review of the commercial clam industries in the United States.
See Ritchie (1977) in McHugh et al. (1982), citation 1552. (J.L.M.)

Fishery management. Lecture notes on coastal and estuarine studies, No. 10. Springer-
The hard clam (Mercenaria mercenaria) has a remarkable capacity to remain closed
under adverse conditions, which helps it to survive. North of Cape Cod in New England
they exist only in certain bays where oceanographic conditions favor spawning.
Abrupt and spectacular changes in abundance and distribution occur as water temperatures
rise and fall in relatively long-term environmental change. The nucleus for resurgence
is provided by the relatively few that survive cold periods. (J.L.M.)

413 McHugh, J.L. 1985.
(abstract).
Among subjects covered are the detrimental effects of oil on clams, and the responses
collected at others pollution. Shell uniformity and the ability of clams to remain closed
for weeks out of water are discussed. The production of amitopan agents by clams,
effects of certain neurosecretions on clam hearts, the effects of environmental factors
on shell growth increments, and the functioning of the catch-muscle mechanism are
described. General fishery topics covered include techniques for preventing preda-
tion, and certain aspects of a new hard-clam fishery in the Santer River delta in South
Carolina following the diversion of Sante River water to the Cooper River. (Modified
author's abstract - J.L.M.)

Comprehensive report on the hard clam (Mercenaria mercenaria) industry in New
York State. State Univ./NY, Stony Brook, NY 11794, 57 p. Unpubl. manuscr.
submitted to T.P. Ritchie for preparation of A comprehensive review of the commercial
clam industries in the United States.
See Ritchie (1977) in McHugh et al. (1982), citation 1552. (J.L.M.)

Comprehensive report on the quahog clam (Mercenaria spp.) industry in Florida. Dep.
submitted to T.P. Ritchie for preparation of A comprehensive review of the commercial
clam industries in the United States.
See Ritchie (1977) in McHugh et al. (1982), citation 1552. (J.L.M.)
Northern quahog Mercenaria mercenaria has a significantly longer shelf-life than southern quahog M. campechensis and the Texas quahog M. mercenaria texana. Survival response across all storage temperatures was significantly longer for all species harvested during January through April compared with harvest from June through August. All species in 4° C refrigeration experience stress which would be interpreted as death by commercial standards. Survival was longer in 10° and 15° C, but potential adverse microbial consequences and objectionable odors resulting from single deaths would preclude use of this storage temperature. Fecal coliform and aerobic plate counts (35°C) of live clams remained relatively constant during storage. However, aerobic plate counts conducted at 25°C showed a marked increase for clams stored at all temperatures. Further considerations with use of initial, temporary wet storage in ambient and refrigerated water for acclimation offered advantages, but do not appreciably extend subsequent shelf-life. (Modified authors' abstract - J.L.M.)

417 Parker, Kenneth M. 1975.
An experiment was conducted to determine if protection of Mercenaria mercenaria using Argopecten gibbus, calico scallop shells, as a covering is feasible. A total of 150 L/5 m³ samples were gathered, 75 from control areas and 75 from experimental areas. Comparisons were made of overall numbers of clams, natural recruitment of clams, substrate analysis, and size frequency. Results show that there was a substantial increase in numbers of clams in experimental areas, apparently caused by protection provided by Argopecten gibbus shells. (Modified author's abstract - J.L.M.)

Seagrass beds provide some natural refuge for hard clams Mercenaria mercenaria from predatory whelks. If mechanical clam harvesting is prohibited in seagrass beds, these habitats can shelter older, economically less valuable clams to serve as a "spawning pump" for heavily harvested areas. Mechanical harvesting in seagrass beds causes long-term damage to the seagrass and does not enhance settlement success of hard clams. Consequently, the benefits of habitat-specific clam management that prohibits mechanical harvesting in seagrass beds outweigh the costs, as judged from field experiments in North Carolina. (Modified author's abstract - J.L.M.)

Commercial mariculture of Mercenaria mercenaria (Lanne) at Aquacultural Research Corporation, Dennis, Massachusetts. J. Shellfish Res. 5(1):42 (abstract).
In May and June, 5- to 8-mm hatchery-produced quahog seed is planted in a field nursery. Two types of nursery are used: surface-suspended and bottom-suspended trays. In September and October nurseries are harvested. Seed size ranges between 15 and 25 mm, and recovery is between 90 and 95%. Within 48 h of harvest, seed is bottom planted in an intertidal area and covered with 0.5-in. Conwed mesh. Field growout including nursery time requires 2.5 to 3 growing seasons, and a recovery of 65% is expected. (Modified author's abstract - J.L.M.)

See Ritchie (1977) in McHugh et al. (1982), citation 1552. (J.L.M.)

421 Strand, Ivar. 1976.
See Ritchie (1977) in McHugh et al. (1982), citation 1552. J.L.M.

422 Street, Michael W. 1976.
See McHugh et al. (1982), citation 1552. (J.L.M.)

423 Street, Michael. 1986.
The hard clam fishery was of relatively minor importance until the mid-1970s when harvests increased through use of hydraulic escalator dredges. Landings increased dramatically and set new records during 1977-82. Much of the increased catch came from Carteret County where kicking is the harvest method. Landings have been relatively low since 1983. The fishery may be at its maximum level despite increasing effort. (J.L.M.)

See Ritchie (1977) in McHugh et al. (1982), citation 1552. (J.L.M.)

See original. (J.L.M.)

To investigate the extent to which populations of Mercenaria mercenaria might be genetically adapted to local conditions, adult clams were collected from three natural populations in Massachusetts, Virginia, and South Carolina. Three sets of females from each location were mated with males from all three locations to produce the nine possible combinations of a factorial cross. When ready for growing out, each cross was divided into three portions and shipped to nurseries in each of the three localities. Shell length was measured in a sample of clams, 100 clams from each of the nine crosses. After six months shell length was measured in a sample of 100 individuals from each subset of each cross. Data from the first samples, all bred in one location, showed a strong effect of parental origin on shell length. The second set of samples, from each of the nine crosses raised in each of the three locations, continued to show a significant effect of parental origin. However, in the second samples, location of the rearing nursery explained an even larger portion of the variation than does the geographical origin of parental stocks. The more northerly the rearing hatchery, the larger the mean shell length achieved. Each cross performed better in northern waters, but within any one nursery clams with higher proportions of southerly parental contribution tended to grow larger. This was interpreted to mean that stocks from southern areas were able to take greater advantage of preferred growing conditions. (Modified authors' abstract - J.L.M.)

The aim of this study was to compare the consumption of two kinds of food: bacteria and phytoplankton. (J.L.M.)

Hard clams (Mercenaria spp.) were sampled in the Indian River Lagoon in summer 1986. Clams were abundant throughout the central region of the sampling area, but were scarce in the northern and southern extremes. Patterns of environmental variability are invoked to explain the macrodistribution of the animal in the Lagoon, whereas water depth and sediment composition influence small-scale distribution patterns. A study of internal growth lines is utilized to explain the recent history of hard clams in the Lagoon. Information on age distribution of the population elucidates the pattern of annual recruitment in the population. This is considered in light of macroleague disturbances which impact on the Lagoon. (Modified authors' abstract - J.L.M.)

Predator-hard clam (Mercenaria mercenaria) interactions: Spatial scale effects. J. Shellfish Res. 7(1):59 (abstract).

A manipulative field experiment was conducted to determine the covarying effects of juvenile clam patch size and density on survivorship (x SD = 3.45 mm, SD = 0.38 mm). A complete 3 x 4 factorial design was used with three densities (25, 150, and 300 clams/0.25 m²). Patch size had a very significant effect (p<0.005) on survivorship; the larger the patch, the greater the mortality. The density effect was only slightly significant (p<0.10). The interaction of both variables was not significant. Clams show an escape response caused by foraging activities of predators. A laboratory experiment demonstrated a significant decrease in growth of juvenile hard clams (x SD = 1.2 mm, SD = 0.275, at start) subjected to foraging by hermit crabs (Pagurus longicarpus; 12:80.25 m³) when compared with a treatment with no predators (t-test, p = 0.05). This effect caused individuals to grow at a slower rate and be available longer to a more diverse predator milieu. The shelter related behavior of some crustacean species restricts the area searched during part of each 24 hour period. The densities of shelter sites and predators, and apparent diel patterning of search area by predators may affect the spatial mortality patterns of prey species. (Modified authors' abstract - J.L.M.)

The effect of various levels of air-saturated seawater on Mercenaria mercenaria (Linne), Mulinia lateralis (Say), and Mya arenaria (Linne), with reference to gas-bubble disease. J. Shellfish Res. 5(2):97-102.
Supersaturated seawater was produced in a flowthrough system by injecting air into a pressurized seawater line. Mercenaria mercenaria, Mulinia lateralis, and Mya arenaria were exposed to several different levels of supersaturated seawater at temperatures ranging from 5 to 17°C. Gas-bubble disease occurred at total gas saturation levels of 108% in juveniles of M. lateralis and 114% in juveniles of M. arenaria. Air blisters in the tissue, inflation, and mortality were observed at these levels. Reduced growth in juveniles of M. mercenaria was found at a total gas saturation level of 115%. (Authors' abstract - J.L.M.)

Predation of mud crabs and blue crabs by toadfish Opsanus tau, with a discussion of biological control of crabs in molluscan aquaculture. J. Shellfish Res. 7(1):59 (abstract).

Blue crabs Callinectes sapidus of 77.8-105.3 mm carapace width (CW) were exposed to toadfish of 196-322 mm total length (TL) in the presence of hard clams Mercenaria mercenaria of 4.3-6.5 mm shell height with sand, gravel or hardbottom substrate for 24-96 hrs. in the laboratory. Toadfish could injure or kill blue crabs of almost one-third their size. Crab predation on clams was reduced with the presence of toadfish or gravel. The use of toadfish as a biological control of crab predation in molluscan aquaculture is discussed. (Modified authors' abstract - J.L.M.)

Growth and survival of larval and juvenile polyplacoid clams, Mercenaria mercenaria. J. Shellfish Res. 7(1):3 (abstract).

Five families of Mercenaria mercenaria were produced by spawning adults of known genotypes. Following fertilization, ploidy-altering treatments of 1 mg/L cytochalasin B in 0.1% dimethylsulfoxide were applied at two times. Polar body production, growth, survival and ploidy alteration were analyzed with respect to treatments and families. (Modified authors' abstract - J.L.M.)

433 Creshaw, John W., Jr., Peter B. Heffernan, and Randall L. Walker. 1987.
Reference to Mercenaria mercenaria is made in a paper by Chanley (1968), abstracted in McHigh et al. (1982) (J.L.M.)

Substrate type and predatory risk: Effects on mud crab interaction with juvenile hard clams. J. Shellfish Res. 7(1):59 (abstract).
Mud crabs such as Neopanope sayi are significant predators of juvenile hard clams Mercenaria mercenaria in Long Island waters. Abundance and survival of mud crabs and hard clams are affected by substrate type and predatory risk. In binary substrate-choice experiments, mud crabs preferred broken oyster shell most, followed in order by large gravel (>30 mm diam), small gravel (<17 mm diam), mad, and sand. Mud crab preference for substrates such as gravel or broken oyster shell may result in decreased susceptibility to predation. When substrate combinations contained juvenile hard clams (250 8.8-11.0 mm clams/substrate, 1000 clams/m³), crab predation was lower in sand than in small gravel (82.2% less), large gravel (64.8% less), or small gravel overlaid with sand (64.8% less). Crab behavior and activity patterns in these substrate combinations were determined from video time-lapse recordings and visual observation. Addition of a predator on mud crabs, the toadfish, Opsanus tau, caused a reduction in crab-induced mortality of clams in individual substrate trials (97.6% less in sand, 91.3% less in small gravel). This effect is primarily a result of depressed crab activity, rather than direct crab mortality. In areas where mud crab predation is of primary concern to mariculturists, clam survival may be increased by planting in sand substrates, for which crabs have a low preference. Mud crabs also may be more vulnerable to their natural predators in such substrates. (Slightly modified authors' abstract - J.L.M.)

Eelgrass meadows serve as nursery and habitat for many shellfish species including the bay scallop (Argopecten irradians) and hard clam (Mercenaria mercenaria). Previous studies have demonstrated the importance of eelgrass (Zostera marina) in providing optimal hydrodynamic regimes for bay scallop and hard clam feeding, and providing protection from predators. Reclamation rates of eelgrass are relatively slow (years to decades) even without a recurrence of algal blooms (Aureococcus anaver-
Heterozygosity, growth, and linkage disequilibrium in hybrid populations of Mercenaria mercenaria. J. Shellfish Res. 7(1):9 (abstract).

Lines of the hard clam, M. mercenaria, have been selected for fast growth by Aquaculture Research Corporation and Virginia Institute of Marine Science. These lines do not seem to be inbred, judging from allele frequencies at seven enzyme loci, although there is evidence of genetic drift and loss of rare alleles. Very little relationship between heterozygosity and growth was detected in the offspring of individual crosses between these two lines, nor does variance at any particular enzyme locus seem to affect growth. We do, however, report evidence of linkage disequilibrium between alleles at a variety of enzyme loci and alleles at loci affecting growth in the nursery. (Authors' abstract - J.L.M.)

437 Duncan, Patricia L. 1986.
The use of crab meal as a supplemental food for juvenile hard clams (Mercenaria mercenaria). Masters diss., College of William and Mary, Williamsburg, VA 23186.

In all experiments significantly greater increases in clam shell height and weight were observed in supplemented clams compared with controls when crab meal was fed in proportion to a diet of clams and macrophytes. These data suggest a direct relationship between percentage increase in shell height and crab meal ration at optimum feeding rates. Optimum feeding rates for smaller clams (4-6 mm) were crab meal rations 20-24% of total clam live weight per day. Crab meal served through 100 or 134 micron mesh, autoclaved, and mixed with 25-micron filtered seawater produced the greatest increases in clam weight and shell weight. This indicates the potential for use of crab meal in commercial nurseries as partial replacement for cultured algae. (J.L.M.)

Physiological effects of Protothecozoa tamaraisi on bivalve molluscs. J. Shellfish Res. 7(1):15 (abstract).

After exposure to Protothecozoa tamaraisi (clone GT429), shell valve and/or siphon closure was observed in Mytilus edulis, Spisula solidissima, Arctica islandica, and Modiolus modiolus; increased in Mercenaria mercenaria, Ostrea edulis, Placopecten magellanicus, Geukensia demissa, Mya arenaria, and Mytilus edulis. Clearance rates were increased in Mytilus from Maine, and Ostrea; were unchanged in Mytilus from Rhode Island, and Spisula; were decreased in Mercenaria, Geukensia, and Mya; and were unchanged in Mytilus from Maine, and decreased in Placopecten. Cardiac activity was unchanged in Spisula, Arctica, Geukensia, and Placopecten. There was a transient decrease in heart rate in Mya after exposure to GT429 which was correlated with increased siphon closure. There were significant changes in cardiac activity in Ostrea (22% of individuals tested), Geukensia (60%), and Mytilus (57%). These changes were increased heart rates in Geukensia and Mytilus, periods of cardiac arrhythmia and decreased heart rates. (Modified authors' abstract - J.L.M.)

Clam size, sex of clam, concentration of serotonin, and site of administration of serotonin were found to influence the induction of spawning in the hard clam Mercenaria mercenaria. Overall the male clams greater than 36.4 mm thickness were more likely to spawn in response to serotonin injection at concentrations of 0.2 or 2.0 mM. Administration of serotonin by injection in the anterior adductor muscle resulted in significantly more spawnings than intraglandal injection of dispersal in water surrounding the incumbent siphon. (Modified authors' abstract - J.L.M.)

Preliminary results of a study of the relationship between reproductive development of the quahog (Mercenaria spp.) and influential physical factors in the Indian River Lagoon, Florida. J. Shellfish Res. 7(1):67 (abstract).

The northern quahog (Mercenaria mercenaria) shows a distinctly cyclical pattern of gonadal development throughout most of its range along the eastern seaboard of the United States, but little information is available for the species at the southern limit of its range. Discerning the reproductive cycle in Florida is complicated by the occurrence of Mercenaria campechiensis and hybrids in this region. Hard clams were collected monthly from September 1986 to June 1987 in two geographically distinct areas of the Indian River Lagoon. Temperature, salinity, dissolved oxygen and chlorophyll concentration were monitored biweekly during this time period. Hard clams of a variety of size classes were collected from three stations in each area, sectioned for histological examination, and classified according to developmental stage based on visual appearance of the gonads and average monthly oocyte diameters. The relationship between reproductive development and potentially influential physical factors is discussed. (Modified authors' abstract - J.L.M.)

Prodissociocoel I and II length and height and larval hinge structure did not appear significantly different among offspring of the three parental types. Mercenaria campechiensis larvae appeared to exhibit increased external shell sculpturing and increased shell depth at late larval and early juvenile stages. (Modified author's abstract - J.L.M.)

The relative effects of seston flux and sediments on individual growth rates of Mercenaria mercenaria: Results of a factorial field experiment. J. Shellfish Res. 7(1):67-68 (abstract).

Preliminary descriptive/correlative field studies on wild Mercenaria mercenaria in a coastal lagoon in southern New Jersey suggested that individual growth rates are affected by "food provision rate" (equivalent to the horizontal flux of seston; flux units: mg/sq cm/s) and deposited sediments. Ten clams (30-45 mm shell length) were placed in each of 36 experimental plots (12 per site), each a round excavation of 0.3 m² area and 10-15 cm deep in the ambient sediment filled with either mud, sandy mud, or sand. Clams were also put in undisturbed sediment at each site as controls for the sediment transport procedure. An ANOVA, with change in shell length as the dependent variable, showed significant differences between sites (P<0.001) and sediment type (P<0.05). Combining all data by site and sediment type showed a 13% difference in growth rates between the slowest and fastest sites, and a 25% difference between sediment types, with slowest growth in mud and fastest in sand. Tidal current velocities and four seston parameters (chlorophyll a, particulate organic and inorganic matter (POM and POM), and energy content) were measured 20 times in near-bottom waters at each site. Flux of POM was well-correlated with growth rates. Neither seston concentrations nor current velocities alone were correlated with growth rates. Hence the significant "site" differences are attributed to differences in seston flux. This experiment provides further support for the importance of seston flux in controlling growth rates of suspension-feeding bivalves. It also provides the first estimate for the relative importance of seston flux and sediment type. (Modified author's abstract - J.L.M.)

Brewers condensed soubles (BCS) was used to culture bacteria which were fed to colorless flagellates which were in turn fed to juvenile oysters (Crassostrea virginica) and clams (Mercenaria mercenaria). Growth of clams fed colorless flagellates, BCS enrichment cultures, and bacteria was compared with growth of starved controls and animals fed Tetraselmis suecica. Paraphysomonas vestita was the only species of colorless flagellate to consistently give growth greater than the starved control. BCS enrichment culture varied greatly in its nutritional value. Average oyster growth on P. vestita was 55% of growth obtained with T. suecica. Oysters fed combinations of T. suecica and P. vestita did not grow as rapidly as on a pure diet of T. suecica. No growth occurred when oysters and clams were fed on a purely bacterial diet. (J.L.M.)

Growth of Georgia Mercenaria mercenaria (L.) juveniles in an experimental downwelling system. J. Shellfish Res. 7(1):68.

Five cohorts of Mercenaria mercenaria seed were stocked at various densities (0.3-3.3 kg/m²) on experimental scale downwelling systems and growth was analysed for the period Oct. 15 to Dec. 1, 1986. To ensure maintenance of each cohort's inherent genetic variance, size were never graded or separated according to size. Mean flowrate to downwellers was 1.2 L/min with ambient water supply (sand filtered) replaced daily for about 6 h by cultured seawater (Wells GLancy method) at 10 flowrate. Mean biomass increases varied among downwellers from 130.6-954% in 47 days period. Flowrate to biomass ratios are shown to have a general effect on growth rates. Flowrate to biomass ratios varied from 11.6-72.8 L/min/kg. A doubling to trebling of biomass was achieved within the flowrate/biomass range of 14.1 to 17.2 L/min/kg after 47 days. These figures are very similar to the results reported by Manzi et al.

43
(1986) for experimental scale upweller systems in South Carolina. Cohorts can be divided into groups which grew faster in the first (Oct. 15-Nov. 11) or second half (Nov. 11-Dec. 1) of the study period. Growth rates achieved by these groups were shown to be significantly different during the second half, and are thought to be dependent on the flow rate to biomass ratio. (Modified authors’ abstract - J.L.M.)

Variation in phenotypic traits such as production characteristics may be studied using either quantitative or single locus genetics. An analysis of juvenile growth rate in the hard clam Mercenaria mercenaria is underway and will be discussed later. (Modified author’s abstract - J.L.M.)

Genotypic and phenotypic frequencies of the notata form of Mercenaria mercenaria were calculated from data provided by four studies: two natural populations from Georgia, one from South Carolina, and one hatchery brood. Phenotypic frequencies calculated for each study ranged from 0.76% to 2.25%. Gene frequencies calculated by Maximum Likelihood Estimation were 0.04 to 0.11%. There were no significant differences between samples of natural populations. The natural populations and the hatchery brood were not comparable. The notata variant is the only morphological character inherited as if controlled by a single gene that has been found in M. mercenaria. The uses of such a marker are numerous. One application would be the marking of offspring from controlled matings to determine their subsequent success. (J.L.M.)

The manual outlines the processes and equipment required to culture four shellfish species. The hard clam, Mercenaria mercenaria, Methods of producing food for shellfish are also included. (Modified authors’ abstract - J.L.M.)

In 1986, the Town of Brookhaven undertook a hard clam population survey in eastern Great South Bay, an area of 3238 hectares, that in 1985 produced 40,000 bushels of hard clams. Replicate 1.20 m² grabs were taken at 140 stations according to a block random design with 1.7 X 105 m² quadrats. Length and thickness of all clams greater than 20 mm in length were measured. A hard clam distribution map was prepared using a clam/m² (apparent minimum density for harvesting) cutoff. Five distinct areas (beds) having densities greater than the cutoff, and three areas with densities below the cutoff (non-woods) were identified. Size (age) frequency distributions were calculated baywide and for each bed and non-bed. Bottom type in beds was sand or sandy mud or shell fragments, while non-beds had muddy sand or mud without shell fragments. The population structure was similar for beds and non-beds even though the mean density of all beds and all non-beds was 10.6 and 2.4 clams/m², respectively, and both had annual recruitment. However, individual bed stations had a greater range of sizes than did non-bed stations. This suggests that population dynamics in beds and non-beds are different. Field, laboratory and literature data provide some insight as to causes. Management implications are considered. (Modified author’s abstract - J.L.M.)

A traditional management practice in New York’s hard clam (Mercenaria mercenaria) fishery has been to transplant adult clams from cooler northern waters to the relatively warmer waters of Great South Bay. It is believed that such spawner transplants increase the length of time that clam larvae are present in the bay and, thereby, enhance the probability that at least some of the larvae will encounter favorable conditions for survival and settlement. Histological analysis of the gametogenic cycle of native and transplanted clams showed that two critical assumptions were unsound: 1) that spawning by the native clams is defined and predictable, and 2) that the transplanted clams spawn after the native clams have ceased spawning. Other considerations, including the scale of the transplant projects relative to the natural stocks suggest that these programs are unlikely to significantly increase recruitment in Great South Bay. (Authors’ abstract - J.L.M.)

Suffolk County is the center of the marine fishing industry in New York State. The industry has been dominated by landings of hard clams (Mercenaria mercenaria) but the hard clam fishery has fallen on hard times recently. By 1985 hard clam landings in the County had declined 76% from the last peak production year of 1976. In response to this decline a report was funded by the County and completed by the Marine Sciences Research Center of SUNY at Stony Brook and Suffolk County’s hard clam industry: An overview and an analysis of management alternatives. With funding from the National Marine Fisheries Service a Suffolk County hard clam advisory group was formed to screen these management alternatives and suggest others. The charge made to the Advisory Group was to assist the County’s Planning Department in preparing a plan for management of the hard clam resources. The goals of the plan were to: 1) identify actions that should be taken to assure the survival of a viable commercial hard clam industry capable of supporting a significant number of baymen harvesting clams on a full-time basis; 2) identify actions that should be taken to preserve a hard clam industry that provides baymen with a source of income, and others with the opportunity to enjoy clam harvesting on a recreational basis; 3) identify actions that should be taken to: a) maintain environmental conditions in local marine waters that are conducive to the reproduction, growth, and survival of hard clams; and b) maintain the certification of these waters for the harvest of shellfish resources. The rest of the report summarizes these goals in some detail, under the headings: 1) hard clam stock enhancement strategies and recommendations; 2) fishery management information, enforcement strategies, and recommendations; 3) marine water quality monitoring, fishery habitat protection strategies, and recommendations. (J.L.M.)

Seed size at planting is the dominant factor affecting hard clam survival to marketable size when field growout techniques are used. The use of plastic mesh nets, crab traps, and wire mesh bags (filled with oyster shells) alone or in combination can be used to increase survival of hard clams of >6 to 8 mm shell height. These techniques do not provide sufficient protection for 2-mm seed. The combination of net + crab trap + shell bag was nearly twice as effective as the net alone when 10-14 mm seed was used five times as effective as the net alone when 8-8 mm seed were planted. Survival in excess of 50% slows the growth rate and yields higher percentages of submarketable <25-mm. shell (New York legal limit) clams. Local markets and dealers would accept all clams > 22 mm. (Authors’ abstract - J.L.M.)

In the 1800s and early 1900s Raritan Bay had commercial fisheries for five shellfishes, including hard clam Mercenaria mercenaria. Oyster and soft clam fisheries have ceased to exist, and hard clam, blue crab, and lobster fisheries have had periods of substantial decline. The hard clam fishery was limited by pollution and increasingly smaller areas of the bay were open for marketing clams. The entire bay was closed in 1961. The eastern end has been reopened for claming since 1983 when a deputation plant was constructed to process hard clams. These clams can be and have been relayed to clean beds in Barnegat Bay. (Modified author’s abstract - J.L.M.)

The purpose of this manual is to acquaint the reader with farming techniques to raise hard clams (Mercenaria mercenaria). Site selection is the most important decision that must be made. The upwelling system is used to grow very small seed clams to field planting size (5-8 mm). Field growout must provide protection from predators, be inexpensive and easy to maintain. Legal requirements are complex, and a minimum of 3 months is needed to obtain all required permits. Expenses depend on site, culture methods, clam growth, and survival, among other things. Guidelines are: 1) prepare to confront new problems each day, and devise cheap solutions; 2) write everything down; 3) never expect something to work until it actually has; and 4) when things get tough, never lose sight of why you are doing this. The appendix contains criteria for selection of sites. (J.L.M.)

The results of the cost-analysis model indicated that removing slow growing animals from the production system would not result in a net reduction in production costs, since the value of the animals discarded exceeded the savings realized by confining production to fast growing individuals. (Modified author's abstract - J.L.M.)

Selected broodstocks from Aquaculture Research Corporation and Virginia Institute of Marine Science were spawned on three occasions at different times of year for production of inbred and reciprocal outbred lines. Growth and survival were monitored at regular intervals for two years and the populations were sampled at one year of age to determine allozyme frequencies. In each trial one of the outcrossed lines demonstrated more rapid growth than the parental lines, but not the same line in each case. Early growth was not a good predictor of subsequent growth. Early growth was strongly affected by the time of spawning, resulting in great disparities between trials. But this difference disappeared by the time the lines reached 18 months of age. There was some indication that the fastest growing lines were more heterozygous than other lines, but no relationship between heterozygosity and rapid growth could be demonstrated within lines. Some of the population reached market size in 18 months and a large portion were market size in two years from spawning, an increase of at least 6 months over growth expectations of South Carolina wildstock. (Modified authors’ abstract - J.L.M.)

456 Pline, Marc J. 1984.

Experiments in 1986 were designed to determine whether larval settlement of Mercenaria mercenaria occurred at specified sites around the perimeter of Long Island Sound, and the relative growth rate of clams at those sites. Stations were located at the 5-m depth contour, were out of the influence of major riverine inputs or polluted harbors, and were chosen to be relatively uniform in substrate type. Settlement was monitored in 21 x 21 x 5 cm plastic boxes, filled with either natural substrate from the site or with a standard sand, and covered with 8-mm plastic mesh. Growth of 10-mm hatchery-reared clams was determined by measuring growths held at a density of 500/m^2 in 0.4 m plastic-coated wire mesh cages with 8-mm openings. The cages were buried approximately 10 cm into the substrate. Divers were used for all gear deployment and subsequent sampling. Mercenaria settlement occurred at all stations, and site differences are discussed. Seasonal growth of planted clams was statistically different at the four Connecticut stations for which complete growth data were obtained. Growth of the clams did not simply reflect known east-west gradients of salinity, temperature, phytoplankton abundance or pollution levels. Based on 1986 results, three sites that produced very different growth results were chosen for further study in 1987. (Modified authors’ abstract - J.L.M.)

This report was prepared with support provided by Suffolk County through the Suffolk County Planning Commission and by the William H. Donner Foundation. It includes: History and current status of the hard clam (Mercenaria mercenaria) fisheries in Suffolk County; A selection of management alternatives for individual water bodies; Information priorities; The hard clam fishery; Histories of Suffolk County’s hard clam fisheries; The history of the hard clam fishery of Moriches Bay and Shinnecock Bay; History of the Peconics and North Shore hard clam fisheries. The recreational hard clam fishery in Suffolk County; Hard clam management in New York; A historical overview; Suffolk County’s changing coastal environment; Salinity and Great South Bay; Effects of dredging activities on hard clams; Management alternatives; Seed planting; Spawner sanctuaries; Predator control as a means of improving hard clam production; Selected closure of harvest grounds; Limited entry and harvest quotas as tools for managing Suffolk County’s hard clam fishery; The economics of management alternatives for the hard clam in Great South Bay, New York - Executive summary; Private mariculture; Law enforcement aspects of hard clam management; The hard clam relay; New Jersey’s program and the outlook for Suffolk County; The economics of management alternatives for the hard clam in Great South Bay, New York; and Glossary. (J.L.M.)

Intertidal populations of four species of whelks (Busycon) in Wassaw Sound, Georgia. J. Shellfish. Res. 7(1):22 (abstract).

Hard clams, Mercenaria mercenaria, and oysters, Crassostrea virginica, occur intertidally in Georgia, and intertidal whelks prey upon these commercially important shellfish. The abundance, migration, and feeding habits of intertidal whelks were studied. A small percentage (8%) of whelks was found actively feeding on these two species, 54% on Mercenaria and 48% on Crassostrea. (Modified author’s abstract - J.L.M.)

The Northeast Fisheries Center has compared and ranked, under laboratory conditions, five algal species as nutritional sources for juvenile hard clams (Mercenaria mercenaria). A pennate diatom, Nitzschia sp., common to eastern Long Island Sound’s phytoplankton, promotes rapid growth. But a chain-forming centric diatom does not support growth. - J.L.M.
Biotechnical constraints 326
Biotoxins, ciguatera-like 385
Biourination 253
Bivalves 78, 80, 87, 88, 90, 97, 137, 138, 139, 140, 147, 370
Bivalvia 365, 366
Black Sea 337
Blackwater, River 337
Block Island Sound 329
Blood cells 369
Blue crab 21, 22, 31, 38, 39, 106, 161, 192, 204
Bluepoints Company 181, 407
Bodnids 395
Bogue Sound 32
Bottom area 354
- habitats, hard 359, 431
- muddy 45, 51, 280, 298
- natural shell 32
- prepared 58
- type 448
Boxes 407
Brachidontes sp. 204
Breach, storm-induced 345
Breeding 259, 260
- applied 455
- periods 190
Brevard County 6
Brewers condensed solubles 443
British 337
- Isles 337
Brittany 337
Broad Bay 340
Brood stock 163
Brookhaven 181, 347, 349, 448
Brown tide 435
Brunswick County 392
Budget analysis 54
Bull Bay 151
Burdens, body 263
Burrow, time to 265
Burrowing 327, 328, 341, 342
- behavior 265, 283, 284
- depth of 265
- habit 321
- rate of 265
Bushels per acre 59, 199
- permit 96
Baysia canaliculata 130
- cara 130
- contrarium 286
- sp. 109, 189, 273, 355, 459

C
Cabbage Island 351, 352, 355
Cadmium 34, 35, 180, 195, 250, 263
- radioactive 250
Cages 145, 278, 350, 352, 353
Caging 106, 273
Calcium 99, 148, 216
- carbonate 113, 186
- phosphate concretion 148
Calico crab 142
California 253, 344
Callianassa californiensis 253
Callinectes arcuatus 271
- sapidus 21, 22, 38, 39, 145, 189, 192, 204, 356, 373, 391, 431
- totes 271
Calories 8
Cambrian 328
Canary Islands 337
Cancer irroratus 143
- productus 44
Cancre crabs 44
Candida utilis 8
Cannibalism, reduce 312
Cape Canaveral 267, 344
- Cod 412
- Lookout 281, 282
- May 165, 396
- of Good Hope 337
- Verde Islands 337
Capsules, nylon-protein 137
Caracabua Reef 111
Carapace width 21, 22, 143, 431
Carbohydrates 99, 166
Carbon 50, 113
- cycle 10, 427
- dioxide 113
- fixation 36
- hydrate 99
Carbonate 99
Carboylase, phosphoenolpyruvate 272
B-Carboxyl group 99
Carcinus maenas 229
Cardiac activity 438
- arrhythmia 438
Cardioexcitatory neuropeptide 286
- neurotransmitter 164
- peptide 164
Caribbean 175
Carrión County 152, 423
Catch 61, 200, 208, 374
- muscles 91, 120, 413
- per man 59
- tow 151
- unit of effort 159, 200, 402
Cell concentrations 311
- density 87, 149, 150
- like bodies, hyaline 369
- walls 105
Cells 105
Cellular debris 369
Cephalopods 138
Cerium-144 287
Certifed areas 59, 61
- beds 148
Cesium-137 287
Chain bridges 67
- weights 120
Chamelea striata 337
Changes in length 208
Charleston 63
Charts 258
Check list 425
Chemical alteration, diagenetic 123
- composition 36, 122
- cues 115
Chemoautotrophic capabilities 36
Chemosynthesis 36
Cherrystones 53, 95, 179, 354, 374, 383, 392, 402
Chesapeake Bay 38, 39, 64, 136, 334, 340, 402, 425
Chesire 337
Chief 266
Chills 33
Chincoteague Bay 320
Chlamydial agent 244
Chlamys varia 304
Chlorella sp. 105, 311
Chlorine 221
Chloropheid-(a) 126, 153, 442
- concentration 440
Chlorophyte 27
Chooanofflagellate 395
Chowders 53, 95, 354, 374, 383, 392
Chromatography 201
Chromium 34, 35, 50
Chromosome number 346
Circulatory system 316
Cirri, eu-latero-frontal 247
Clam, brackish water 393
- density 44, 429
Clam farming 14
 ____ fishing 19
 ____ harvest 98
 ____ patch size 123
 ____ introduced 220
 ____ populations, survey of 351
 ____ sizes 21, 179, 373, 439
 ____ soft 128, 129, 318, 320, 452
 ____ surf 318, 393
 ____ weight 347
Clammers 76, 396
Clamming 162
 ____ hand 14
 ____ industry 362
Clams 12, 17, 28, 44, 66, 89, 443
Clams, green 256
 ____ larger 402
 ____ modern 123
 ____ numbers of 417
 ____ per day 159
 ____ polyplid 432
 ____ soft 353
 ____ surf 45, 49, 51
 ____ undersized 242
Clamshell bucket 62
Class frequency histogram 78
Clasmainella fassicata 137
Closed areas 242, 452
 ____ cycle mariculture 291
 ____ season 214
Closures 111, 159
 ____ of grounds 53, 135, 187, 218, 222, 396, 450, 458
Clumping 404
Codasia orbicularis 36
Coelomic cavity 342
Cold resistance 1
Coliform data 360
 ____ fecal 416
Collagens 201
Colorado Lagoon 253
Commensal 146
Commercial abundance 392
 ____ applicability 117
 ____ fishermen 129
 ____ fishery 111, 165, 224, 320, 351, 380, 402
 ____ harvesting 151, 282
 ____ landings 325
 ____ mariculture 291
 ____ nursery facility 232, 437
 ____ operation 289
 ____ permits 95
 ____ potential 377
 ____ production 87
 ____ scale 230, 232, 410
 ____ shellfisheries 98, 107
 ____ size catches 67, 92
 ____ stores 292
Commercialization 228
Commercially important 243, 259, 260
 ____ valuable 307
Common around edges of oyster beds 217
Comparative study 427
Compared 469
Conclusions 186
Condemned beds 237, 238
Condition 51, 140
Connecticut 220, 363, 457
Consumer confidence 254
 ____ demand 403
Consumption 427
 ____ of raw shellfish 18, 33
Constraints 408
Contaminants, microbiological 202
 ____ organic 264
Contamination 330

Contaminated areas 396
Contractility 91
 ____ myocardial 164
Contraction 252, 286
Controls 437
Controlled environment mariculture 291
Cooper River 413
Copper 34, 35, 127, 180, 195, 256, 283, 284, 305
Corals 296
Core Sound 32, 159, 160, 275, 282
Cost 205, 222, 238, 388, 407, 418
 ____ effectiveness 58, 106, 223
 ____ of construction 232, 410
 ____ of production 454
 ____ per clam 58
 ____ reduction efforts 289
Costly 222
Cultures 242
Crab activity 434
 ____ behavior 434
 ____ blue 320, 353, 356, 373, 391, 431, 452
 ____ calico 142, 349
 ____ hermit 142, 349
 ____ horseshoe 42
 ____ meal 117, 388, 437
 ____ rock 143
 ____ size 143, 373
 ____ species 143
 ____ traps 451
 ____ cancrus 44
 ____ green 220
 ____ mud 106, 130, 142, 353, 361, 367, 391, 431, 434
 ____ stone 106
Crassostrea gigas 89, 90, 137, 147
 ____ virginica 52, 105, 122, 140, 211, 287, 290, 335, 370, 443, 459
 ____ sp. 204
Crepidula fornirica 331
Croppings 278
Cross-lamellar structure 84, 216
Crossoes 426, 436, 455
Crouch, River 337
Crushed oyster shell 21, 22
Crustacea 240
Cryptochiton stelleri 201
Cryptomonas sp. 234
Cuba 64
Cultivate 131, 320
Culture 76, 94, 100, 107, 114, 149, 178, 205, 214, 221, 222, 223, 228, 229,
 230, 232, 244, 288, 289, 300, 308, 310, 320, 322, 361, 407, 410, 443, 447
 ____ conditions 140
 ____ containers 150
 ____ methods 453
 ____ of-off-bottom 176
 ____ shellfish 433
 ____ units 222
Cultured 294
Cultures, bottom 145
Cyanobacterial 27
Cycles, fortnightly 173, 216
Cyclic AMP level 164
Cytochlasin B 342
Cytochemical reactions 249
Cytochemistry 249
Cytology 249
Cytoplasmic granules 248
Death 82, 172, 184
 ___ assemblages 186, 188
 ___ , frequency of 184
 ___ , season of 172
Decay products 28
Decline of industry 98
Dew 337
Degraded conditions 362
Dehydrogenase, malate 272
Delaquisa Bay 337
Delaware 108, 109, 122, 291, 381
 ___ Bay 240
Demand 53, 125, 215, 223, 224, 242
 ___ , market 73, 224
Demographic analysis 78
 ___ parameters 297
Denis 87
Density 112, 119, 124, 125, 153, 154, 160, 187, 192, 220, 228, 229, 232,
 236, 251, 253, 273, 276, 279, 317, 350, 351, 352, 353, 354, 356, 377,
 392, 444, 448, 457
 ___, mean 61
 ___ of algae 133
 ___ of inert material 133
Department of Environmental Conservation 218
Depth 64, 116, 219, 344
 ___ of burial 365
Depuration 35, 37, 64, 197, 224, 245, 348
 ___ plant 19, 26, 237, 238, 396, 452
Design 447
Detention time 107
Detritus 299
Develop abnormally 346
Development 151
 ___ of eggs 105
Devon 337
Diarrhea 33
Diatom, centric 460
 ___, pennate 460
Diatoms 114, 243, 311, 322
Dicrateria sp. 105
Diets 77, 122, 176, 255, 271
 ___ , artificial 404
 ___ , micro-encapsulated 137
Digestion 137, 249, 293, 316
Dietetic gland 318
 ___ , tubules 301, 302
 ___ , tract 193, 194, 240
Digger, pea 160
Digging 341
Dimensions 80
Dimethylsulfoxide 432
Dinoflagellate 311
Disease producing organisms 202
 ___ , shellfish-borne 202, 209
Diseases 12, 28, 33, 52, 53, 73, 221, 223, 242, 244, 254, 256, 430
Dispersants 404
Dissolution 99
Distribution 59, 61, 187, 192, 355, 356, 412
Divers 457
Division of Marine Resources 218
Dorset 337
Downwelling system 444
Dredges 101, 112, 176, 212
Dredges, Fall River 67
 ___ , hydraulic 320, 374, 393, 423
Dredging 450, 458
 ___ season 189
Drills 158, 356
Drought 23
Drum Inlet 393
Drying 191
Duck farms 27, 243
Dunaliella tertiolecta 234
Dynamics 104, 299

E
Ecological analysis 237
 ___ concepts 176
 ___ stress 243
Economic analysis 228, 399
 ___ considerations 403
 ___ efficiency 400
 ___ impact 218
 ___ losses 347, 349
 ___ success 64
 ___ viewpoint 87
Economically feasible 289, 388
Economics 6, 55, 87, 96, 107, 118, 223, 295, 326, 450, 458
Economy, state of 167
Ecosystem 199
 ___ , benthic-dominated 435
 ___ , pelagic-dominated 435
Eelgrass 435
 ___ beds 160, 279, 435
Effluents 190
 ___ , heated 221
Effort 128, 200
Egestion 50
Egg production 47, 48
 ___ size 198
Eggs 140, 211, 261, 289, 290, 346
Electron micrographs 84
 ___ microscope 156
Electrophoresis 120, 169, 208
Embedding 191
Embryos 65
Enclosures 176
Energetics 142
Energy 8, 166, 221
 ___ content 442
 ___ gain 49
 ___ metabolism 157
 ___ , net 142
 ___ of activation 318
 ___ reserve 140
 ___ storage 277
Enforcement 60, 64, 222, 242, 270, 280, 351
English Channel 313, 337
Enriched conditions 362
Enrichment 243
Environment 7, 32, 78, 82, 83, 84, 86, 99, 109, 110, 129, 186, 191, 210,
 216, 228, 235, 251, 268, 279, 289, 295, 296, 297, 298, 306, 310, 313,
 324
 ___ subtidal 298
Environmental change 412
 ___ control 69
 ___ factors 309, 362, 410
 ___ , effects on shell growth 413
 ___ recorder 298
 ___ variability 428
Environments, muddy 195
Enzyme loci 436
 ___ , malic 272
 ___ phenotypes 3
Enzymes 5, 36, 105, 169, 318
 ___ , digestive 137
 ___ , pyruvate 272
Epizoonic 28
Equipment 67
Escape response 429
Escutcheon 337, 344
Essex 337
Estuaries 46
Etching 113
 ___ , acid 191
Eupleura caudata 182, 189
Europe 107
Eutrophosphenopsis depressa 241, 367
Evolution 182, 306
Foot 193, 194
Foraging 142
Forage development 208
Forces 342
Foreign elements 127
Fort Pierce 312

Fouling 94, 175, 221
community 336
France 337, 344
Freeport 175
Freezing tolerance 1
Fulton Market 19, 53, 382
Funding 59, 60

Galveston Bay 111
Game production 275
ratio 48
Gametes 3, 5, 370
Gametogenesis 124, 226, 277, 409
Gametogenic cycle 179, 449
Ganga 164
Gas-bubble disease 430
Gastroenteritis 33
Gastrointestinal illness 218
Gastropods 138, 142, 143
Gloea ceylonica 29
Gene frequency 169
loci, enzyme 366
Genetic analysis 445
differences 32
drift 436
factors 195
improvement 260
selection 433
variation 365, 444
Genetics 3, 4, 5, 103, 139, 210, 259, 426
ecological 169
quantitative 445
single-locus 445
Genic variability 366
Genotype 3, 5, 432
frequencies 3, 5, 446
Geographical distribution 80
Geographical effects 426
Geophysics 173
Georgetown County 215
Gerontic stage 184, 185
Geukensia demissa 438
Ghost-shrimp 253
Gill tissue 36, 193, 272
Gills 65, 194, 244, 246, 256
Glucogenesis 155
D-Glucuronolactone 318
Glutamic acid 331
alpha-Glycerophosphate 24
Glycine 331
Gold-199 287
Gompertz function 188
Gonad growth 277
volume 213
Gonadal condition 125
Gonadal development 103, 125, 226, 355, 440
masses 275
sections 102
tissue 124, 193
Gonads 194
visual appearance 440
Grant 112
Granules, extracellular 250
refractile 249
Granulocyte 249
Grass cover 13, 160
Gravel 379, 431, 434
grain 21, 22, 373
Gravesend Bay 135
Gravity 207
Great Bay 165
Inexpensive 453
Infectious hepatitis 23
Ingestion 46, 50, 142, 323
___ rate 45, 49
Inorganic matter, particulate 442
Inspection 00, 242
Intake canal 94
Intertidal areas 356
___ zone 298
Intracoastal Waterway 392
Intragastral injection 439
Intraspecific density 32
Invertebrate communities 359
Invertebrates, bottom 339
Investment 75
Ionic regulation 316
Ireland 337
Irish Sea 337
Iron 127, 195, 305
Island Beach 258
Islip 58, 59, 60, 62, 181, 209, 212, 218, 222, 242, 349
Isochrystis galbana 8, 105, 234, 248, 300, 311
___ sp. 149, 150
Isoenzymes, octopine dehydrogenase 138
Isosmotic state 25
Isotope-free sea water 113
Isozymes 272
Iteroparous species 57

J, K
Jamalca Bay 135
James River 200, 203, 374
Jamestown Bridge 199
Japan Sea 233
Juvenile stage 85
Juveniles 8, 31, 45, 49, 51, 52, 74, 94, 110, 112, 117, 122, 130, 143, 149,
150, 158, 186, 192, 231, 237, 244, 265, 277, 294, 298, 354, 355, 356,
388, 391, 407, 429, 430, 432, 434, 437, 441, 443, 444, 445
Km 318
KCl concentration 24
Kickers, clam 152, 159
Kicking 160, 163, 423
Kidney 148, 246, 250, 285, 389
Kinase, pyruvate 272
Kynognum 293

L
LC50 65
Labor force 167
Laboratory conditions 460
Laboratory-spawned 103
Lactic acid 99
Lactobacillus sp. 9, 10
Labellibranchs 369
Lamnaria longicirrus 294
Landings 6, 37, 64, 95, 96, 97, 111, 128, 162, 165, 181, 182, 187, 214, 215,
224, 242, 254, 393, 402, 408, 423
___, peak 242
___ tax 96
Log 3.4.5
Larvae 65, 74, 80, 107, 114, 140, 158, 184, 185, 198, 205, 207, 211, 234,
300, 371, 336, 339, 432, 441, 449
___, abnormal development of 346
Larval ecology 339
___ settlement 192, 457
___ survival 23, 47, 48, 198, 276
Laser microprobe 123
Law 326
___, enforcement 59, 450, 458
Lawbreaking 237
Laws, disregard for 212
___, violation of 218

Layers, annual 173
Lead 34, 35, 180, 195
Lease policies 228
Leased areas 61, 68, 131
___, bottom 131
Leasing 132
___ systems, reevaluation of 351
Legal requirements 453
Legislation 93, 403
Length 47, 48, 86, 448
___, body 31
___ – height relationships 80
___, total 431
Leptocottus armatus 278
Lesions 56
Leucoocytes 369
License holders 167
Licenses 225, 242
Life cycle 222
___ history 158, 192, 224, 241, 457
___ span 40, 297
___ tables 185
Ligament 337, 341, 344
Light 207
___ penetration 435
Limit access 59
Limited entry 450, 458
Limulus polyphemus 189
___ sp. 120
Linkage disequilibrium 436
Linkhorn Bay 340
Lipids 8, 140, 193, 194
Lipofuscinosis 56
Little Egg Harbor and Bay 131, 165, 317
___ River 151
___ Tybee Island 351, 355
Littleneck 53, 59, 95, 96, 179, 181, 354, 374, 379, 383, 392, 402
Liver 256
Lobsters 220, 452
Location of holes 20
___, suitability of 132
Locomotion 342
Lofoten Islands 337
Log forms 151
Logistic function 188
Loligo pealei 201
Long Beach 258, 393
___ Island 27, 33, 52, 130, 175, 180, 181, 196, 243, 244, 254, 262, 310,
345, 407, 434, 435, 448, 449, 453
___ Sound 116, 126, 220, 457, 460
Longevity 192, 241, 405
Low visibility 58
Lunar cycles 216
Lunule 328, 337, 344
Lymphocyte-like cell 249
Lymphocytes 369
Lynnhaven Bay and Roads 340
Lysozymes 249

M
MDH 272
ME 272
Macoma sp. 204
Macroalgae 294
Macrofauna benthic 203, 251, 329, 330, 340
Macroscopic algae 307
Mactra sp. 204
Madeira 337
Magnesium/calcium ratios 123
Maine 85, 387, 407, 438
Maintain, easy to 453
Maintenance 225, 232
___, ease of 410
Malaco bredella grossa 146
New York Harbor 135, 243
State Department of Health 18
Newport 189
News 203
Nickel 34, 35, 195
Nitrate 150, 307
Nitrite 150
Nitrogen 150, 307
— balance 150
— reduction 36
Nitrogenous wastes 27, 285
Nitzschia sp. 460
— Marine Fisheries Commission 159
River 32
Santee River and Bay 151, 226, 409
Northampton County 380
Northumberland Strait 171
Norway 337
Notoata markings 259
Nourished 339
Nova Scotia 64, 171, 337, 344
Nucleus 249
Number of clams 92
Nurseries 28, 54, 55, 72, 87, 90, 107, 154, 196, 205, 221, 223, 229, 230, 232, 255, 304, 407, 426, 435
Nursery culturing 87, 88, 90, 388, 408
— rearing 87, 89
— system, upflow 410
Nutrients 243, 307, 312, 404
Nutrition 110, 324, 332
Nutritional conditions 40, 107
— constituents 18
— sources 460
— studies 255
— value 443
Nutritive material 369
— quality 8

O

Octopus bimaculoides 201
Offshore waters 67
Oil, detrimental effects 413
— spill 196, 265
Old 86
— clams not sexually inactive 17
Ontogeny 306
Oocyte diameters 440
Open access 96
— areas 242, 452
Openings of grounds 53, 174, 212, 320
Operational longevity 410
Opportunus smirnovi 145, 240, 367, 391, 431, 434
Organic-coated sediment 45, 46
— compounds 292
— free sediment 45, 46
— materials 45, 46, 322
— matrix 84
— matter 84
— dissolved 9
— particulate 442
— particulate, flux of 442
Origins 342
Ornithine 24
Osmotic stress 25
Ostend Harbor 337
Ostrea edulis 89, 90, 140, 301, 302, 304, 438
virginica 141
Ova 47, 48
Ovalipes ocellatus 142, 143
Over-exploitation 161
Overfishing 96, 129, 162, 182, 242, 320, 399
Overharvesting 14, 61, 212, 347
Oviparous species 57
Oxidation 24, 25
Oxygen 166
— consumption 29, 65, 115, 157
— dissolved 440
— tension 29
— uptake 29
Oyster Bay, South 347
— Creek 183, 185, 190
— drag method 152
— drills 182, 189
— harvest 98, 128
— reefs 203
— shell 374
— broken 434
— crushed 373
Oystering 237
Oysters 8, 16, 17, 28, 45, 49, 51, 59, 129, 135, 141, 175, 181, 182, 210, 211, 217, 218, 241, 244, 257, 259, 272, 287, 290, 291, 307, 308, 312, 358, 443, 452, 459

P

PCB's 264
PEPCK 272
PEPCK 272
Pgd 3, 5
6-Pgd 4
Pgi 3, 4, 5
Pgm-2 3, 4, 5
Pgm-3 3, 4, 5
pH 24, 107, 137
— optimum 318
pK 99, 272
POC 126
PON 126
Pagurus longicarpus 142, 143, 429
Paleobathymetry 186
Paleobiology 173
Paleoecology 186
Paleoecologic significance 172
Paleoecology 298
Paleolatitudes 186
Paleoilatitudes 186
Paleolatitudes 186
Pathological significance 72
Pathogenesis 52
— bacterial 202
Pathologic significance 244
Pavlova lutheri 9, 427
Pecoecology and north shore 450, 458
Pedal movements 341
Penalties 93, 216
Penns 350
Peptides 286
Periodic 173
Periostral extensions 298
Periostracum 314, 337, 344
Permits 132, 151, 225, 453
Petroleum additions 170
Phaeodactylum tricornutum 234, 308, 311, 322
— sp. 133
Phaeophorbide a 45
Phaeopigments 45, 126
Phagocytized materials 249

54
Phagocytosis 248
Phagosomes 248
Pharmacology 286
Phenotypic frequency 169, 446
--- traits 445
Phosphate 307
--- , elevated 246
Photographs 80
Photomicrographs 82, 302
Phototaxis 207
Phototungstic acid 156
Physical barriers 176
--- factors 440
--- physiological effects 438
--- energetics 30
--- shocks 183, 190
--- state 195
--- stress 186
--- traits 139
Physiology 81, 141, 234, 252, 314, 315, 316, 343, 357, 364, 369
Phytoplankton 9, 10, 107, 122, 175, 189, 202, 229, 243, 427, 460
--- abundance 457
--- biomass 386
--- concentration 235
Pico-plankton 27
Pilot-plant 308
Piracy and pirates 238
Placopesten magellanicus 438
Plankton organisms 339
Planktonic stages 192
Planting 320, 333, 350, 451
--- experimental 378
Plantings 76, 92, 106, 108, 109, 130, 407
Plate counts, aerobic 416
Pleistocene clams 123
Plodify-altering 432
Poaching 212, 242
Pocomoke Sound 23, 86
Poisons, chemical 176
Polar body production 432
Polinices duplicata 158, 189
--- triseriata 158
--- sp. 109
Polishing 191
Political attitudes 326
Pollutants 251, 253, 325
Polluted harbors 457
--- waters 26, 162, 254
Pollution 14, 35, 56, 127, 129, 161, 238, 297, 325, 393, 452, 457
--- assay 307
--- , organic 165
Polychaete predation 109
Polychaetes 296
Polychlorinated biphenyls 264
Polyculture systems 312
Polydora websteri 11
Poole Harbor 337
Population analysis 401
--- density 119, 199
--- distribution 428, 448
--- dynamics 61, 168, 185, 186, 351, 448
--- heterozygosity 189
--- renewal 213
--- status 320
--- structure 279, 448
Populations, intertidal 459
--- , natural 139, 446
Poquonnock River 220
Port Bolivar 111
--- Jefferson Harbor 180
--- St. Joe 169
Portsmouth Harbor 337
Postlarvae 90, 205, 441
Potential 407, 408
Power plants 87, 94, 216, 221
--- Station, Marchwood 305
Predator control 176, 225, 450, 458
--- size 21, 373
Predatory risk 434
Prehistoric 82
Prey 42, 176, 189, 361, 429
--- consumed per day 142
--- density 44, 273
--- size 21, 22, 143, 273
Price analysis 401, 403
--- of clams 19, 53, 59, 72, 73, 96, 159, 205, 242, 320, 349, 382, 396, 402
Prices, ex-vessel 403
Prismatic structure 216
Problems of the fishery 402
Procaryotic cells 36
Production 100, 104, 215, 224, 229, 230, 242, 270, 295, 304, 355, 396, 408, 448
--- annual 351
--- , controlling 37, 68
--- , trends 139
Productive 304
Productivity 330
--- , biological 243
Profit 73, 87
Progress 408
Prolene 24, 25
Propeller wash 152, 159
Property rights 118
Protection 143, 417, 435, 451, 453
Protective mechanism 7
Protein nitrogen 150
Proteins 8, 91, 150, 233
Protagentan magellanicus 438
Protagonist tamariscis 44, 278, 283, 284
Protozoan, ciliated 244
Providence River 199
Pseudofaeces 45, 46, 49
Pseudo-schistus paradoxus 27, 45, 49, 50
Public health 135, 244, 254
--- regulations 60
Public hearings 93
Pumping activity, control of 134
--- rate 115, 257
Purification 348
Pyruvate 24
--- kinase 155

Q

QH 157
QO 157
Quahog 16
Quantitative survey 62
Quonset Point 56
Quotas 95, 96, 450, 458

R

Raceway system 63, 232
Raceways 153, 154, 228, 230, 308, 312, 322, 410
Rack, bottom 299
Radioactively labeled shells 113
Radioactivity 113
Radioisotopes 221, 287
Radula protractor muscle 286
Rafts 175, 287, 298, 407
Rainfall 309
St. Petersburg 84
Stained, alizarin 294
Stains, electron 156
Standing crop 137, 192, 200, 247, 351
Stock 349, 355
Surf gel electrophoresis 3
Staten Island 135
Status 407
...of the fishery 396
Sterilization, x-ray 176
Sterols 194
Stichococcus sp. 50, 311
Stock assessment 59, 222
...estimate 199
Stones, beach 312
Storage centers 249
...refrigerated 267
Storm 353
...induced breach 79
...runoff 360
Straight-hinge larvae 80, 140
Stress 7, 59, 140, 243, 325, 456
Stressful conditions 253
Strike 23
Strontium/calcium ratios 123
Structural 81
Structure 314
Subdaily cycles 173
Sublegals 179
Substrate 143, 228, 341, 344, 431, 457
...analysis 417
...modification 176
...preference 24, 32
...type 434
Substratum 190
...without a 298
Subtidal 354
Subtropical 36
Succinate 24, 216
Succinic acid 99
Suffolk County 347, 450, 458
Suitability of location 132
Sulfide oxidation 36
...rich environments 36
Sulfur 127
...waste products 36
Supply 53
Surf clams 45, 49, 51
Survey, exploratory 392
...procedures 62
Survival 23, 38, 58, 72, 92, 108, 109, 130, 145, 178, 205, 220, 222, 228,
...253, 261, 267, 273, 276, 333, 344, 349, 350, 352, 353, 354, 361, 377, 391,
...416, 432, 434, 449, 451, 453, 455
...differential 3, 5
...value 7
Survive 337, 346, 412
Survivorship 351, 429
...curves 185
Suspension feeder 50
Swimming speed 207
Synechococcus sp. 50

T
Tagging procedure 262
Tahitian strain 149, 150
Tampa Bay 64, 169
Tangier Sound 23, 86
Tanks 87, 294
Tapes decurtata 304
Taxonomy 266
Technically sophisticated 222

T
Tagging procedure 262
Tahitian strain 149, 150
Tampa Bay 64, 169
Tangier Sound 23, 86
Tanks 87, 294
Tapes decurtata 304
Taxonomy 266
Technically sophisticated 222

T
Tagging procedure 262
Tahitian strain 149, 150
Tampa Bay 64, 169
Tangier Sound 23, 86
Tanks 87, 294
Tapes decurtata 304
Taxonomy 266
Technically sophisticated 222

T
Tagging procedure 262
Tahitian strain 149, 150
Tampa Bay 64, 169
Tangier Sound 23, 86
Tanks 87, 294
Tapes decurtata 304
Taxonomy 266
Technically sophisticated 222

T
Tagging procedure 262
Tahitian strain 149, 150
Tampa Bay 64, 169
Tangier Sound 23, 86
Tanks 87, 294
Tapes decurtata 304
Taxonomy 266
Technically sophisticated 222

T
Tagging procedure 262
Tahitian strain 149, 150
Tampa Bay 64, 169
Tangier Sound 23, 86
Tanks 87, 294
Tapes decurtata 304
Taxonomy 266
Technically sophisticated 222

U
Ultraviolet light 41
...treated water 37
Ulva lactuca 294
Umbonal shapes 80
Umbonate larvae 80
Umbones 344
Uncertified 61
...areas 148
Undependable 404
Underestimating age 136
Unexploited stocks 171
United Kingdom 337, 344
United States 101
Unpolluted beds 237
Unvegetated sand flats 32
Upflow nursery system 454
Upweller systems 444
Upwelling 28
system 453
Urea 150
Urosalpinx cinerea 182, 189, 355, 356

V
Valuable 295
Value 6, 37, 64, 205, 222, 223, 224, 336, 393
dockside 6
of animals discarded 454
Valve closure 7
movement 216
Valves 186, 188, 337, 341, 344
Vandalism and vandals 19, 58, 350
Variability 301, 302
Varices 298
Veneracea 344
Venerupis decussata 304
semdecussata 89, 90
Ventricle 24, 25, 164
Venus antiqua antiqua 213, 266
— casina 337
— fasciata 337
— gullina 40, 155
— ovata 104, 337
— striatula 20, 337
— verrucosa 9, 10, 337, 427
Vibrio sp. 52
Violation 93
Viral pathogens 245
Virgin Islands 175
Virginia 23, 74, 80, 97, 169, 200, 203, 210, 344, 351, 353, 374, 379, 380, 381, 390, 401, 402, 403, 426
Institute of Marine Science 436, 455
Viridity 256
Virus, human polio 245
Viruses 202
Viviparous species 57
Volume 231
regulation 25
Vomiting 33

W
Wahlund effect 5
Wales, North 168
Wallace Groves Aquaculture Foundation 175
Walton 337
War 215
Washing 191
Wassaw Island 355
— Sound 351, 355, 356, 456, 459
Waste disposal 330
— heat 87
— recycling 308, 312
Wastes 243
— dissolved 307
Wastewater effluent 312
Water balance 316
— clean 118
— cooling 87
— depth 101, 128, 129, 280, 354, 362, 428
— diluted sea 29
— dispersal in 439
— eutrophic 89
— flow 153, 229, 230, 232, 410
— heated 183
— polluted 118, 287
— quality 187, 362
— monitoring program 351
— temperature 412
— waste 322
Watermen 225
Waters, approved 202
— brackish 1
— contaminated 197
— uncertified 212
Wave action 350
Weakness 33
Weight 77
— body 34
Weights, dry 117, 194, 195, 277, 355
— tissue 194
— wet 117, 149, 194
Wells Glancy method 444
West Harbor 220
Passage 190
Whelk predation 160
Whelks 13, 106, 130, 160, 161, 273, 349, 356, 418, 459
Woods Hole 312
Worldwide Proteins Bahamas, Ltd. 175
Worm 146
Worms, bait 312

Y, Z
Yealm, River 337
Yeast 8, 122, 248
Yield 210
— per permit 95
York River 23
Young 86
Yucatan 64, 337
Zeeland 337
Zinc 34, 35, 127, 180, 195, 246, 305, 363
Zinc-65 287
Zonation 99
Zooplankton 317
Zostera marina 279, 435

Errata
Following are two corrected references from the earlier hard clam bibliography by McHugh et al. (1982) published as NOAA Technical Report NMFS SSRF-756.

Kinetics and effects of DDT in a tidal marsh ditch. Trans. Am. Fish. Soc. 94(2):152-159. (Corrected page numbers)
NOAA TECHNICAL REPORT NMFS

Guidelines for Contributors

FORM OF MANUSCRIPT

Authors are encouraged to retain manuscripts on word processing storage media, such as diskettes, floppy disks, cassette or magnetic tapes, and submit a hard copy run from the storage media. Handcopy should be typed double-spaced on white bond paper in the following sequence:

Title page
Contents
Abstract
Text
Acknowledgments
Citations
Text footnotes
Appendix
Tables
Figure Legends
Figures

CONTENTS OF MANUSCRIPT

Contents. Contains all text headings with page numbers omitted.

Abstract. Not to exceed one double-spaced typed page. Should include a sentence or two explaining to the general reader why the research was undertaken and why the results should be viewed as important. Abstract should convey the main point of the paper and outline the results or conclusions. Footnotes and references do not belong in the abstract.

Text. A brief introduction should portray the broad significance of the paper. The entire text should be intelligible to readers from different disciplines. All technical terms should be defined. Follow the U.S. Government Printing Office Style Manual, 1984 edition.

Abbreviations and symbols. Define all symbols, abbreviations, and acronyms. Define all symbols in equations and formulas. Abbreviate units of measure only when used with numerals or in tables and figures where there is lack of space. Periods are rarely used except for et al., vs., etc., i.e., etc.

Measurements should be expressed in metric units. Other equivalent units may be given in parentheses.

Text footnotes. Type on a separate sheet from the text. Footnotes are not used for reference material or personal communications, but rather to explain or define terms in the text and for contribution numbers.

Personal communications are noted in parentheses in the text (name, affiliation, brief address including zip code, month and year).

Citations. All written sources should be listed in the Citations section, including unpublished and processed material. In text, cite as Smith and Jones (1977) or (Smith and Jones 1977); if more than one citation, list chronologically (Smith 1936; Jones 1975; Doe 1977). All sources cited in the text should be listed alphabetically by the senior authors' surname under the heading CITATIONS. Abbreviations of periodicals and serials should conform to the Biosis Data Base257. The author is responsible for the accuracy of all citations.

Acknowledgments. Gather all acknowledgments into a brief statement at the end of the text. Give credit only for exceptional contributions and not to those whose contributions are part of their normal duties.

Tables. Tables should supplement, not duplicate, the text. Each table should appear on a separate page, and be numbered consecutively. Headings should be short but amply descriptive so that the reader need not refer to the text. For values less than 1, zeros should precede all decimal points. Give each column a heading with units of measure indicated in parentheses. Do not change the unit of measure within a column. Table footnotes should be numbered consecutively in Arabic numerals across the page from left to right and down; to avoid confusion with exponents, place them to the left of numerals, e.g., 10. All tables should be cited consecutively in the text and their placement, where first mentioned, indicated in the left-hand margin of the manuscript page. Lengthy tables that are typed in the proper format and are clean and legible can be used camera-ready.

Figures. Photographs and line drawings should be of professional quality—clear and concise—and reducible to 42 picas for full-page width or to 20 picas for a single-column width, and a maximum of 57 picas high. All illustrations must be proportioned so that they are legible when reduced to fit the page format. Line weight and lettering should be sharp and even. Lettering on graphs should be upper and lower case, and vertical lettering should be avoided as much as possible (except for vertical, y, axis). For values less than 1, zeros should precede all decimal points. Reproductions of line art work are accepted in the form of photographic prints from negatives or photomechanical transfer. Half-tone should be sharply focused with good contrast. Micron rules should be inserted on electron micrographs, even when magnification is included in the figure legend. There should be good distinction between identifying letters (preferably press-on) and background of photograph. All figures should be cited consecutively in the text and their placement, where first mentioned, indicated in the left-hand margin of the manuscript page. Each figure should be labeled in pencil on the back. DO NOT SEND original or photographic prints of figures to the Scientific Editor; they will be requested when the manuscript is accepted for publication.

Copyright. Government publications are in the public domain, i.e., they are not protected by copyright.

SUBMISSION OF MANUSCRIPTS

Send original hardcopy and two duplicated copies of the manuscript to:
Dr. Andrew E. Dizon, Scientific Editor
NOAA Technical Reports NMFS
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
PO. Box 271
La Jolla, CA 92038-0271

Indicate whether word processing storage media are available, but do not forward disks until requested by Scientific Editor or Scientific Publications office.

Copies of published reports. For single monographs, the senior author will be provided with 50 copies free of charge and 30 to his or her organization. For collections of papers, each senior author will receive 50 separates and one cover, and his or her organization will receive the same. Additional copies may be purchased in lots of 100.

ADDITIONAL INFORMATION

Questions regarding editorial policy and procedures may be forwarded to:
Nancy Peacock, Managing Editor
NOAA Technical Reports NMFS
National Marine Fisheries Service, NOAA
Scientific Publications Office
Bin C15700
Seattle, WA 98115
NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 13, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS—Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS—Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS—Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS—Reports containing data, observations, instructions, etc. A partial listing includes data serials; predictions and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS—Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS—Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161